3.5 Indeterminate Forms

Consider the function given by the rule $f(x) = \frac{3x}{x}$; its graph is shown below. Clearly, $\lim_{x\to 0} \frac{3x}{x} = 3$. Note, however, that if one merely tried to plug in 0 for x when investigating this limit, a $(\frac{0}{0})$ situation would have occurred.

Whenever direct substitution into $\lim_{x\to c} f(x)$ yields a $\frac{0}{0}$ situation, then the function f is not defined at c, since division by zero is not allowed. But the *limit MAY still exist.* Or, it may not exist. To see which of these two situations occurs, it is necessary to *rewrite* the function f to get it into a form where one can better analyze what's happening **near** c.

EXAMPLE Problem: Evaluate the limit $\lim_{x\to 0} \frac{3x}{x}$.

> Solution: Remember that when investigating a limit as x approaches 0, x is not allowed to equal 0. And, for all values of x except 0, $\frac{3x}{x} = 3$. Therefore, the limit statement can be rewritten in an easier form:

$$\lim_{x \to 0} \frac{3x}{x} = \lim_{x \to 0} 3 \qquad (\frac{3x}{x} = 3 \text{ whenever } x \neq 0)$$
$$= 3 \qquad \text{(the limit of a constant function)}$$

When evaluating the limit $\lim_{x\to c} f(x)$, the function f may be replaced by ANY function that agrees with f NEAR c (but not necessarily AT c).

EXERCISE 1	Solution Evaluate the limit: $\lim_{x \to 1} \frac{3 - 3x}{x - 1}$
	Be sure to write complete mathematical sentences.
EXAMPLE $a \stackrel{0}{=} situation;$	Problem: Evaluate the limit: $\lim_{x \to 0} \frac{3x}{x^2}$

 $a \frac{0}{0}$ situation; the limit exists

 $a \frac{0}{0}$ situation; the limit does not exist

Solution: Again, direct substitution yields a $\frac{0}{0}$ situation.

$$\lim_{x \to 0} \frac{3x}{x^2} = \lim_{x \to 0} \frac{3}{x}$$

Since $\lim_{x\to 0} \frac{3}{x}$ does not exist, neither does $\lim_{x\to 0} \frac{3x}{x^2}$.

Introduction;

 $\frac{0}{0}$ situations

http://www.onemathematicalcat.org

EXAMPLE

Problem: Evaluate the limit:

$$\lim_{x \to 1} \frac{x^2 + x - 2}{x - 1}$$

Solution: Direct substitution of x = 1 into this limit statement yields a $\frac{0}{0}$ situation. It is necessary to rewrite $\frac{x^2+x-2}{x-1}$ in a way that better displays what is happening *near* x = 1. Since 1 is a zero of the numerator, x - 1 is a factor of the numerator. Indeed, factoring and canceling yields:

$$\frac{x^2 + x - 2}{x - 1} = \frac{(x - 1)(x + 2)}{x - 1} \qquad \text{(factor the numerator)}$$
$$\stackrel{\text{for } x \neq 1}{=} x + 2 \qquad \text{(cancel factor of 1)} \qquad (*)$$

Thus:

$$\lim_{x \to 1} \frac{x^2 + x - 2}{x - 1} = \lim_{x \to 1} \frac{(x - 1)(x + 2)}{x - 1}$$
$$= \lim_{x \to 1} (x + 2)$$
$$= 3$$

a 'restricted' equal sign The second '=' sign that appears in (*) above is a sort of 'restricted' equal sign. It is NOT completely correct to say that $\frac{(x-1)(x+2)}{x-1} = x+2$, since these two expressions are NOT equal for all values of x. The left-most expression is not defined when x is 1; the right-most expression is 3 when x is 1.

To bring attention to this difference in the expressions, the necessary restriction is indicated over the equal sign. Thus, the reader becomes aware that the equality only holds when x is not equal to 1.

If the 'restricted' equal sign seem bothersome to you, there is an alternate (but more cumbersome) solution. One can instead say:

$$\frac{x^2 + x - 2}{x - 1} = \frac{(x - 1)(x + 2)}{x - 1} ;$$

and for $x \neq 1$, this latter expression simplifies to x + 2.

an important distinction The equal sign in the sentence

$$\lim_{x \to 1} \frac{(x-1)(x+2)}{x-1} = \lim_{x \to 1} (x+2)$$

is *not* a restricted equal sign. This equal sign is asserting that two *real numbers* are equal. Remember that every limit, if it exists, is a real number.

However, take away the limit instruction, and a restricted equal sign is needed:

$$\frac{(x-1)(x+2)}{x-1} \stackrel{\text{for } x \neq 1}{=} x+2$$

One way to view the '=' sign in this latter sentence, is that it is being used to compare two *functions*. Two *functions* are equal only if they have the same domains, and the outputs agree for all allowable inputs. A precise statement follows.

http://www.onemathematicalcat.org

DEFINITION Let f and g be functions of one variable. Then: equality of functions $\mathcal{D}(f) = \mathcal{D}(g)$ and $f = g \iff f(x) = g(x)$ for all x in the common domain **EXERCISE 2** ♣ 1. What mathematical sentence is being defined in the previous definition? 2. What does the symbol ' \iff ' mean in this definition? * * 3. Suppose you are told that q and h are both functions of one variable, and q = h. What can you conclude? 4. Suppose you are told that g and h are both functions of one variable, * $\mathcal{D}(g) = \mathcal{D}(h) := \mathcal{D}$, and $g(x) = h(x) \quad \forall x \in \mathcal{D}$. What can you conclude? 5. Let f and q be defined by the rules: $f(x) = x \cdot \frac{x-1}{x-1}$ and g(x) = xDoes f = g? 6. Let f and g be defined by the rules: $f(x) = \frac{3x}{x^2}$ and $g(x) = \frac{3}{x}$ Does f = g? **EXERCISE 3** Evaluate the following limits. Be sure to write complete mathematical sentences. 1. $\lim_{x \to 1} \frac{x^2 + x - 2}{3x^2 - x - 2}$ 2. $\lim_{x \to -2} \frac{x^2 + x - 2}{x^3 - 7x - 6}$ **EXERCISE 4** In the sentences below, replace the question marks with an equal sign = or an appropriate 'restricted' equal sign. • 1. $\lim_{x \to 2} \frac{e^x(x-2)}{2-x}$? $-\lim_{x \to 2} e^x$? e^2 • 2. $\frac{xe^x - 2e^x}{2-x}$? $-e^x$ **EXAMPLE** Problem: Evaluate the limit: $\lim_{x \to 0} \frac{3/x}{1/x}$ $a \frac{\infty}{\infty}$ situation

Solution: Direct substitution yields an $\frac{\infty}{\infty}$ situation. However, for $x \neq 0$ it is true that $\frac{3/x}{1/x} = 3$, and so:

$$\lim_{x \to 0} \frac{3/x}{1/x} = \lim_{x \to 0} 3 = 3$$

EXAMPLE

Problem: Evaluate the limit:

Solution:

$$\lim_{x \to 0} \frac{1/x^2}{1/x}$$

$$\lim_{x \to 0} \frac{1/x^2}{1/x} = \lim_{x \to 0} \frac{1}{x}$$

Since $\lim_{x\to 0} \frac{1}{x}$ does not exist, neither does $\lim_{x\to 0} \frac{1/x^2}{1/x}$. Hence, limits of the form $\frac{\infty}{\infty}$ may or may not exist.

EXAMPLE

Consider next the one-sided limit:

a 1^{∞} situation

$$\lim_{x\to 0^+} (1+x)^{1/x}$$

The chart below suggests what happens as x approaches zero from the positive side:

×	(1+*)
0.100000000000000	2.59374246010000
0.01000000000000	2.70481382942153
0.0010000000000	2.71692393223559
0.0001000000000	2.71814592682493
0.0000100000000	2.71826823719230
0.0000010000000	2.71828046909575
0.000001000000	2.71828169413208
0.0000001000000	2.71828179834736

Based on these results, it should not be surprising that:

$$\lim_{x \to 0^+} (1+x)^{1/x} = e$$

(This limit is sometimes taken as the *definition* of the irrational number e.)

indeterminate forms; $\frac{0}{0}, \frac{\pm\infty}{\pm\infty}, 1^{\infty}$ Limits that result in a $\frac{0}{0}$ or $\frac{\pm\infty}{\pm\infty}$ or 1^{∞} situation under direct substitution are called *indeterminate forms*. Such limits may or may not exist. They always require further analysis, to see what's really happening near the x-value of interest.

EXERCISE 5	Evaluate the following limits, if they exist:
	• 1. $\lim_{x \to 1} \frac{x^3 - 1}{x - 1}$
	$4 2. \lim_{x \to 2} \frac{x^3 - 4x^2 - 11x + 30}{x - 2}$

evaluating a limit by rationalizing the numerator Recall that *rationalizing* means to rewrite in a form with *no radicals*. Thus, to *rationalize the numerator* means to rewrite the numerator in a form that contains no radicals.

Consider $\lim_{x\to 0} \frac{\sqrt{x+1}-1}{x}$. Observe that direct substitution would result in a $\binom{0}{0}$ situation. To get better insight into this limit, you might want to plug numbers like -.001 and .001 into $\frac{\sqrt{x+1}-1}{x}$. Does it appear to be getting close to any particular number?

Here's how to "massage" the function into a form that is more suitable for seeing what happens for values *near* zero:

$$\lim_{x \to 0} \frac{\sqrt{x+1}-1}{x} = \lim_{x \to 0} \frac{\sqrt{x+1}-1}{x} \cdot \frac{\sqrt{x+1}+1}{\sqrt{x+1}+1}$$
$$= \lim_{x \to 0} \frac{(x+1)-1}{x(\sqrt{x+1}+1)} = \lim_{x \to 0} \frac{1}{\sqrt{x+1}+1}$$
$$= \frac{1}{2}$$

Do you believe this answer, based on your earlier analysis?

EXERCISE 6	Let's investigate the previous example a bit more closely.	
	♣ 1. Is the sentence	
	$\frac{(x+1)-1}{x(\sqrt{x+1}+1)} = \frac{1}{\sqrt{x+1}+1}$	
	true? Why or why not? Is a 'restricted' equal sign needed here?4 2. Is the sentence	
	$\lim_{x \to 0} \frac{(x+1) - 1}{x(\sqrt{x+1} + 1)} = \lim_{x \to 0} \frac{1}{\sqrt{x+1} + 1}$	
	true? Why or why not? Is a 'restricted' equal sign needed here?	
EXERCISE 7	Solution Evaluate $\lim_{x \to 0} \frac{3x}{\sqrt{x+4}-2}$. If the limit does not exist, so state.	
QUICK QUIZ	1. What is an 'indeterminate form'? Answer in a complete sentence.	
sample questions	2. Evaluate $\lim_{x\to 1} \frac{x^2-1}{x-1}$. If the limit does not exist, so state. Be sure to write a complete mathematical sentence.	
	3. Is the sentence $\frac{x^2 - 1}{x - 1} = x + 1$	
	true for ALL values of x ? Why or why not?	
	4. Graph the equation $y = \frac{x^2 - 1}{x - 1}$.	
	5. Graph the function $f(x) = \frac{x^2 - 1}{x - 1}$.	
	6. Let f and g be functions of one variable. Give a precise definition of the sentence ' $f = g$ '.	

KEYWORDSWhat is meant by $\frac{0}{0}$, $\frac{\pm \infty}{\pm \infty}$ and 1^{∞} situations? Restricted equal sign, equality offor this sectionfunctions, indeterminate forms, rationalizing the numerator.

END-OF-SECTION EXERCISES	Classify each entry below as an expression (EXP) or a sentence (SEN).For any <i>sentence</i>, state whether it is TRUE, FALSE, or CONDITIONAL.
	1. For all real numbers $x, \frac{x^3-1}{x-1} = x^2 + x + 1$.
	2. For all real numbers x except 1, $\frac{x^3-1}{x-1} = x^2 + x + 1$.
	3. Let $f(x) = \frac{x^3 - 1}{x - 1}$ and $g(x) = x^2 + x + 1$. Then, $f = g$.
	4. $\lim_{x \to 1} \frac{x^3 - 1}{x - 1}$
	5. $\lim_{x \to 1} \frac{x^3 - 1}{x - 1} = \lim_{x \to 1} (x^2 + x + 1)$
	6. When evaluating a limit $\lim_{x\to c} f(x)$, the function f can be replaced by any function g that agrees with f , except possibly at c .
	7. Suppose that whenever $x \neq c$, $f(x) = g(x)$. Then, $\lim_{x \to c} f(x) = \lim_{x \to c} g(x)$. 8. $f = g$
	Levaluate the following limits. If a limit does not exist, so state. Be sure to write complete mathematical sentences.
	9. $\lim_{x \to -1} \frac{x^3 + x^2 - 3x - 3}{x + 1}$
	10. $\lim_{x \to 1} \frac{x^3 + x^2 - 3x - 3}{x + 1}$
	11. $\lim_{x \to 2} \frac{x+2}{x^2+4x+4}$
	12. $\lim_{x \to -2} \frac{x+2}{x^2+4x+4}$
	13. $\lim_{t \to 0^+} (1+t)^{1/t}$
	14. $\lim_{y \to 0^+} (y+1)^{1/y}$