
4.3 Some Very Basic
Differentiation Formulas

Introduction If a differentiable function f is quite simple, then it is possible to find f ′ by
using the definition of derivative directly:

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

However, this process is quite tedious. Also, as f gets more complicated, the
limit gets increasingly more difficult to evaluate.

In this section, some differentiation formulas are developed to make life easier.

First, some notation:

NOTATION
for the derivative

prime notation;

f has derivative f ′

There are several notations used for the derivative.

So far, the prime notation has been used: if f is differentiable at x, then the
slope of the tangent line at the point (x, f(x)) is the number f ′(x). The name
of the derivative function is f ′; f ′(x) is the function f ′, evaluated at x.

If y is a differentiable function of x, then its derivative can be denoted, using
prime notation, by y′. For example, if y = x2, then y′ = 2x. If it is desired
to emphasize that y′ is being evaluated at a particular input c, one can write
y′(c).

NOTATION
for the derivative

Leibniz notation;

y has derivative dy
dx ;

dy
dx evaluated at c
is denoted by either
dy
dx (c) or
dy
dx |x=c

If y is a differentiable function of x, then its derivative can alternately be de-
noted by dy

dx . This is the Leibniz notation for the derivative. Read ‘ dydx ’ as ‘dee
y, dee x’.

For example, if y = x2, then dy
dx = 2x. Again, if it is desired to emphasize that

dy
dx is being evaluated at a particular input c, one can write dy

dx (c) or dy
dx |x=c .

These latter two expressions can both be read as: ‘dee y, dee x, evaluated at c’.
In particular, the vertical bar ‘|’ is read as ‘evaluated at’.

Similarly, if f is a differentiable function of x, its derivative in Leibniz notation
is df

dx (read as ‘dee f , dee x’). If one wants to emphasize that this derivative is

being evaluated at a particular value, say c, then one writes df
dx (c) or df

dx |x=c .

One problem with Leibniz notation is that the name of the function and an
output of the function are confused. When one says:

if y = x2, then dy
dx = 2x,

the symbol dy
dx is really being used as both the function name and its output.

Strictly speaking, one should write: if y = x2, then dy
dx (x) = 2x. However, this

is not common practice.

an important use
of Leibniz notation:
the operator d

dx

The notation d
dx can be used to denote an instruction: d

dx acts on a differentiable
function of x to produce its derivative.

For example, one can write:

d

dx
(3x− 1) = 3 and

d

dt
(t2) = 2t and

d

dz
(2z + 1) = 2

This ‘ ddx ’ notation is often used in stating differentation formulas. Also, it is
convenient if you are asked to differentiate a function that is not given a name.
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EXERCISE 1

practice with
notation

Let f(x) = x2.

Rewrite the following sentences about f , using prime notation.

♣ 1. df
dx = 2x

♣ 2. df
dx (3) = 6

♣ 3. df
dx |x=3 = 6

♣ 4. df
dt = 2t

♣ 5. df
dt (3) = 6

♣ 6. df
dt |t=3 = 6

Rewrite the following sentences using Leibnitz notation.

♣ 7. f ′(x) = 2x

♣ 8. f ′(3) = 6

♣ 9. f ′(t) = 2t

compiling some
differentiation tools

We now begin to compile some tools that will help us differentiate functions
more easily.

DIFFERENTIATION
TOOL

the derivative of a
constant is 0

Let f(x) = k, for k ∈ R . Then f ′(x) = 0 .

alternate
notation

This rule can be rewritten, using the ‘ ddx ’ operator, as follows:

For every real number k :
d

dx
(k) = 0

PROOF Proof. Let f(x) = k, for k ∈ R. Then, for every x :

lim
h→0

f(x+ h)− f(x)

h
= lim
h→0

k − k
h

= 0

Thus, f ′(x) = 0.

EXAMPLE Remember that the symbol ‘ ’ merely marks the end of the proof.

If f(x) =
√
π2 − 5, then f ′(x) = 0 .

If y = e− 3, then dy
dx = 0 .

d
dx

( √
7

3
√
2

)
= 0

If f(x) = a+ b, where a and b are constants, then f ′(x) = 0 .

EXERCISE 2 Rewrite each of these examples, using alternate notation.
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DIFFERENTIATION
TOOL

constants can be
‘slid’ out of the
differentiation
process

Suppose that f is differentiable at x, and let k ∈ R. Recall that the function
kf is defined by the rule:

(kf)(x) := k · f(x)

Then:
(kf)′(x) = k · f ′(x)

In words, the derivative of a constant times a differentiable function is the
constant, times the derivative of the function.

alternate
notation

This rule can be rewritten, using a mixture of the ‘ ddx ’ operator and prime
notation, as:

d

dx

(
kf(x)

)
= k · f ′(x)

PROOF Proof. Let f be differentiable at x, and let k ∈ R. It is necessary to show that
the function given by (kf)(x) = k · f(x) is differentiable at x.

lim
h→0

(kf)(x+ h)− (kf)(x)

h

= lim
h→0

kf(x+ h)− kf(x)

h
(defn of kf)

= lim
h→0

k · f(x+ h)− f(x)

h
(factor out k)

= k · lim
h→0

f(x+ h)− f(x)

h
(prop. of limits, f diff. at x)

= k · f ′(x) (f is diff at x)

Thus, the function kf is differentiable at x, and has derivative given by:

(kf)′(x) = k · f ′(x)

What made this
proof work?
Properties of limits!

Observe what made this proof work: since we knew, a priori, that f was dif-

ferentiable at x (so that limh→0
f(x+h)−f(x)

h exists), we were able to use the
property of limits to slide the constant out. The properties of limits will play
a crucial role in the proofs of all the differentiation formulas.

EXAMPLE If f(x) = 2x, then f ′(x) = 2 · ddx (x) = 2(1) = 2 .

If h is differentiable at x, and f(x) =
√

2h(x), then f ′(x) =
√

2h′(x).

If y = 1
2t = 1

2 ·
1
t , then dy

dt = 1
2 ·

d
dt

(
1
t

)
. (This last example can be completed

after the statement of another differentiation tool, the Simple Power Rule.)

DIFFERENTIATION
TOOL

differentiating sums
and differences

Suppose that both f and g are differentiable at x. Then the functions f + g
and f − g are also differentiable at x, and:

(f + g)′(x) = f ′(x) + g′(x)

(f − g)′(x) = f ′(x)− g′(x)

In words, the derivative of a sum is the sum of the derivatives, and the derivative
of a difference is the difference of the derivatives.
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alternate
notation

This rule can be rewritten, using a mixture of the ‘ ddx ’ operator and prime
notation, as:

d

dx

(
f(x) + g(x)

)
= f ′(x) + g′(x)

PROOF Proof. It is shown first that, under the stated hypotheses, f+g is differentiable
at x.

Recall that the function f + g is defined by the rule (f + g)(x) := f(x) + g(x).

Since, by hypothesis, both f and g are differentiable at x, it is known that f ′(x)
and g′(x) exist.

Then:

(f + g)′(x)

:= lim
h→0

(f + g)(x+ h)− (f + g)(x)

h
(defn. of derivative)

= lim
h→0

f(x+ h) + g(x+ h)− f(x)− g(x)

h
(defn of f + g)

= lim
h→0

f(x+ h)− f(x)

h
+
g(x+ h)− g(x)

h
(regroup)

= lim
h→0

f(x+ h)− f(x)

h
+ lim
h→0

g(x+ h)− g(x)

h
(limit of a sum, hypotheses)

= f ′(x) + g′(x)

To see that f − g is differentiable at x, we can now cite earlier results. Note
that:

(f − g)(x) := f(x)− g(x) = f(x) + (−g(x)) = f(x) + (−g)(x)

So, the function f − g can be written as a sum of two functions, with names f
and −g. Then:

(f − g)′(x) = f ′(x) + (−g)′(x) (Why?)

= f ′(x) + (−g′(x)) (Why?)

= f ′(x)− g′(x)

EXERCISE 3 ♣ 1. Prove the previous result yourself, without looking at the book. You
could be asked to write down a precise proof on an in-class exam.

♣ 2. Under what hypotheses is the limit of a sum equal to the sum of the
limits? Was this result used in the previous proof? Where? Were the
hypotheses met?

♣ 3. Re-prove the fact that (f − g)′(x) = f ′(x) − g′(x) (under suitable hy-
potheses), but this time DON’T cite earlier results. Just use the definition
of derivative.
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Does the rule
apply when there are
more than 2 terms?

Although the previous result is stated for only 2 terms, does it tell us that, say,

(f + g + h)′(x) = f ′(x) + g′(x) + h′(x) ,

providing that f , g and h are all differentiable at x? Of course! Just pull out
the old ‘treat it as a singleton’ trick:

(f + g + h)′(x) =
(
(f + g) + h

)′
(x) (group)

= (f + g)′(x) + h′(x) (use result once)

= f ′(x) + g′(x) + h′(x) (use result again)

EXERCISE 4 ♣ Prove that, under suitable hypotheses:

(f + g + h+ k)′(x) = f ′(x) + g′(x) + h′(x) + k′(x)

SIMPLE POWER
RULE

differentiating xn

For all positive integers n :
d

dx
xn = nxn−1

More generally, if n is a real number, and I is any interval on which both xn

and nxn−1 are defined, then xn is differentiable on the interval I, and:

d

dx
xn = nxn−1

EXAMPLE Here are some very basic applications of the Simple Power Rule:

• If f(x) = x2, then f ′(x) = 2x2−1 = 2x . Here, the Simple Power Rule was
applied with n = 2 .

• d
dxx

3 = 3x3−1 = 3x2

• If y = x1007, then dy
dx = 1007x1006. Here, the Simple Power Rule was

applied with n = 1007 .

• The slope of the tangent line to the graph of f(x) = x7 at the point (2, 27)
is f ′(2) = 7(26) .

EXAMPLE

rewriting the function,
to make it ‘fit’
the Simple Power Rule

Here are some more advanced applications of the Simple Power Rule. The
Simple Power Rule is used whenever the function being differentiated looks
like (or can be made to look like) xn. The laws of exponents, and fractional
exponent notation, are used extensively to rewrite functions, to get them into
a form where the Simple Power Rule can be applied. The Algebra Review in
this section reviews the necessary tools.

Problem: Differentiate f(x) = 1
x .

Solution: Rewrite the function as f(x) = x−1. Taking n = −1 in the Simple
Power Rule, one obtains:

f ′(x) = (−1)x−1−1 = −x−2 = − 1

x2

On what interval(s) is this formula valid? It is valid on any interval for which
BOTH 1

x and − 1
x2 are defined. Both expressions are defined on R−{0}. Thus,

the formula is valid for all real numbers, except 0.
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EXAMPLE Problem: Differentiate y =
√
x .

Solution: Rewrite y, using fractional exponents, as y = x1/2. Taking n = 1
2 in

the Simple Power Rule, one obtains:

dy

dx
=

1

2
x

1
2−1 =

1

2
x−1/2 =

1

2
· 1

x1/2
=

1

2
√
x

On what interval(s) is this formula valid? The expression
√
x is defined for

x ≥ 0. The expression 1
2
√
x

is defined for x > 0. BOTH expressions are defined

on (0,∞). Thus, the formula is valid for all positive real numbers.

put the derivative
in a form that matches
the original
function form

It is always a good idea to put the derivative in a form that agrees, as closely
as possible, with the form of the original function. Since the original function
in this example was given in radical form, y =

√
x, the derivative was also

rewritten in radical form, dy
dx = 1

2
√
x

.

d
dxkx

n = nkxn−1 Using both the Simple Power Rule and the fact that constants can be ‘slid out’
of the differentiation process yields an extremely useful formula:

d

dx
kxn = k

d

dx
xn = k(nxn−1) = knxn−1

Thus, for example:

• If f(x) = 3x2, then f ′(x) = 6x .

• d
dxπx

11 = 11πx10

• If y =
√

2x, then dy
dx = (1)(

√
2)x1−1 =

√
2x0 =

√
2 .

It is not necessary to write out all these steps. You should be able to
recognize y = kx as a line that has slope k. Thus, dy

dx = k .

• The slope of the tangent line to the graph of y = 3x5 at the point (1, 3) is
dy
dx |x=1 . Here, dy

dx = 15x4, so that dy
dx |x=1 = 15(1)4 = 15 .

EXERCISE 5

practice with
the Simple Power Rule

For each of the functions listed below, do the following:

• Write the function in the form f(x) = xn.

• Differentiate, using the Simple Power Rule.

• On what interval(s) is the formula obtained for the derivative valid?

• Find the equation of the tangent line to the graph of f when x = 1 .

♣ 1. f(x) = 3
√
x

♣ 2. f(x) = 1√
x

♣ 3. f(x) =
√
x

3
√
x2
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idea of proof
of the
Simple Power Rule

When the exponent is a positive integer, the idea of the proof of the Simple
Power Rule is very simple. This idea is illustrated by considering a special case:

Show that if f(x) = x3, then f ′(x) = 3x2.

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

(x+ h)3 − x3

h

= lim
h→0

(x3 +

one factor of h︷ ︸︸ ︷
3x2h +

more than one h︷ ︸︸ ︷
3xh2 + h3 )− x3

h
(expand (x+ h)3)

= lim
h→0

h(3x2 + 3xh+ h2)

h

= lim
h→0

(3x2 + 3xh+ h2)

= 3x2

A brief review of Pascal’s Triangle, a tool for easily expanding (a + b)n for
positive integers n, will enable you to repeat this argument for higher values of
n.

Pascal’s Triangle Let a and b be any real numbers. Observe the following pattern:

(a+ b)0 = 1

(a+ b)1 = (1)a+ (1)b

(a+ b)2 = (1)a2 + 2ab+ (1)b2

(a+ b)3 = (a+ b)(a+ b)2

= (a+ b)(a2 + 2ab+ b2)

= a3 + 2a2b+ ab2 + ba2 + 2ab2 + b3

= (1)a3 + 3a2b+ 3ab2 + (1)b3

A ‘triangle’ is formed. Each new row is easily obtained from the previous row
by simple addition. It can be proven (F say, by induction) that this pattern
continues forever.

finding (x+ h)7 For example, suppose we want to expand (x+ h)7. Long multiplication would
be extremely tedious. Instead, first write the appropriate types of terms in the
expansion. Each term has variable part xihj , where the exponents add up to
7. The first term has x7 and h0; the second x6 and h1, the third term has x5

and h2, and so on. So we get the term types:

x7 x6h x5h2 x4h3 x3h4 x2h5 xh6 h7

Now, get the correct coefficients from Pascal’s triangle (from the row beginning
with the numbers ‘1 7 . . . ’):

(1)x7 + 7x6h+ 21x5h2 + 35x4h3 + 35x3h4 + 21x2h5 + 7xh6 + (1)h7

Thus:

(x+ h)7 = x7 + 7x6h+ 21x5h2 + 35x4h3 + 35x3h4 + 21x2h5 + 7xh6 + h7
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EXERCISE 6 ♣ 1. Use Pascal’s triangle to expand (x+ h)9.

♣ 2. Use Pascal’s triangle to expand (x− h)4.

Hint: Write (x− h)4 = (x+ (−h))4, so the appropriate term ‘types’ are:

x4 x3(−h) x2(−h)2 x(−h)3 (−h)4

♣ 3. Prove that if f(x) = x4, then f ′(x) = 4x3.

FF The complete proof of the Simple Power Rule would take several pages, and we
do not yet have at our disposal all the necessary tools. However, a sketch of
the proof is as follows:

• First prove the result when x is a positive integer. (An easier proof than
the one sketched above uses the product rule for differentiation.)

• Use the quotient rule for differentiation to extend the result to the negative
integers.

• Use the formula for the derivative of an inverse function to extend the result
to exponents of the form 1

n .

• Write xp/q = (x1/q)
p

to extend the result to all rational exponents.

• Use the exponential function to make sense of irrational exponents: xr =
er ln x. (Here, we require x to be positive.) Differentiate to complete the
proof.

DIFFERENTIATION
TOOL

differentiating ex

If f(x) = ex, then f ′(x) = ex.

Thus, the derivative of the exponential function is itself ! This is a property of
the exponential function that is not shared by any other function. Make sure
you understand what this fact is saying: if you look at any point on the graph
of the function ex, then the y-value of the point also tells you the slope of the
tangent line to that point!
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idea of proof Let f(x) = ex. Then:

lim
h→0

f(x+ h)− f(x)

h
= lim
h→0

ex+h − ex

h

= lim
h→0

exeh − ex

h

= lim
h→0

ex
(
eh − 1

h

)

If it can be shown that limh→0
eh−1
h = 1, then we can complete the proof:

lim
h→0

ex
(
eh − 1

h

)
= ex · lim

h→0

eh − 1

h

= ex(1) = ex

A graph of g(h) := eh−1
h for values of h close to 0 is shown, which illustrates

the fact that limh→0
eh−1
h = 1 .

DIFFERENTIATION
TOOL

differentiating lnx

If f(x) = lnx, then f ′(x) = 1
x .

the result is
believable

Observe that this result is believable: when x is large, the slopes of tangent
lines to the graph of lnx are small; and when x is close to 0, the slopes are large
and positive.

EXAMPLE To differentiate functions involving ex and lnx, it is often necessary to first
rewrite the function, using properties of exponents and logs. These properties
are reviewed in the Algebra Review at the end of this section.

Problem: Differentiate f(x) = e2+x.

Solution: First write f(x) = e2+x = e2ex. Then,

f ′(x) = e2
d

dx
ex = e2ex = e2+x .

Another (easier) way to differentiate f will be possible after we study the Chain
Rule for Differentiation.
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EXAMPLE Problem: Differentiate g(x) = ln 2x .

Solution: First write g(x) = ln 2 + lnx. Then:

g′(x) = 0 +
1

x
=

1

x

Another (easier) way to differentiate g will be possible after we study the Chain
Rule for Differentiation.

EXERCISE 7 Differentiate each of the following functions. It will be necessary to first rewrite
the functions, using properties of exponents and logarithms.

♣ 1. f(x) = ex+5; interpret your result graphically.

♣ 2. f(x) = ln 7x

♣ 3. Do you think that we have the necessary tools yet to differentiate f(x) =
e2x ? Why or why not?

♣ 4. Do you think that we have the necessary tools yet to differentiate g(x) =
ln (x+ 3) ? Why or why not?

A chart summarizing the tools developed in this section is given below:

DIFFERENTIATION TOOLS

prime notation d
dx operator

if f(x) = k, then f ′(x) = 0 d
dx (k) = 0

(kf)′(x) = k · f ′(x) d
dx

(
kf(x)

)
= k · f ′(x)

(f + g)′(x) = f ′(x) + g′(x) d
dx

(
f(x) + g(x)

)
= f ′(x) + g′(x)

(f − g)′(x) = f ′(x)− g′(x) d
dx

(
f(x)− g(x)

)
= f ′(x)− g′(x)

if f(x) = xn, then f ′(x) = nxn−1 d
dxx

n = nxn−1

if f(x) = ex, then f ′(x) = ex d
dx (ex) = ex

if f(x) = lnx, then f ′(x) = 1
x

d
dx (lnx) = 1

x

ALGEBRA REVIEW

radicals and fractional exponents, properties of logarithms

radicals A radical is an expression of the form

n
√
x , (*)

for n = 2, 3, 4, . . . .

When n = 2, (*) is written more simply as
√
x, and is read as the square root

of x .

When n = 3, 3
√
x is read as the cube root of x .

For n ≥ 4, n
√
x is read as the nth root of x .
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meaning of
n
√
x

The purpose of radicals is to ‘undo’ exponents. That is, radicals provide a sort
of inverse to the ‘raise to a power’ operation. Unfortunately, the ‘raise to a
power’ functions f(x) = xn are only 1−1 if n is odd. When n is even, special
considerations need to be made.

ODD roots First consider f(x) = x3. Here, f is 1−1, and its inverse is the cube root
function, f−1(x) = 3

√
x . That is:

For all real numbers x and y :

y = 3
√
x ⇐⇒ y3 = x

Rephrasing, y is the cube root of x if and only if y, when cubed, equals x .

Thus, 3
√

8 = 2, since 2 is the unique number which, when cubed, equals 8 .

Also, 3
√
−8 = −2, since −2 is the unique number which, when cubed, equals

−8 .

Indeed, for all real numbers x, and for n = 3, 5, 7, 9, . . . ,

n
√
xn = x ,

since x is the unique real number which, when raised to an odd nth power,
equals xn.
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EVEN roots When n is even, f(x) = xn is NOT 1−1. Consider, for example, f(x) = x2.
Here, (as for all even powers), R(f) = [0,∞). Given z ∈ R(f), there are TWO
inputs which, when squared, give z. Mathematicians have agreed to choose the
NONNEGATIVE number which works. Precisely, we have:

For all x ≥ 0 and for all real numbers y :

y =
√
x ⇐⇒ y ≥ 0 and y2 = x

That is, y is the square root of x if and only if y is nonnegative, and y, when
squared, equals x .

Thus,
√

4 = 2, since 2 is nonnegative, and 22 = 4 .

The expression
√
−4 is not defined, because there is NO real number, which

when squared, equals −4 .

What is
√
x2? There are TWO real numbers which, when squared, give x2 :

x and −x. We need to choose whichever is nonnegative. The absolute value
comes to the rescue:

For all real numbers x : √
x2 = |x|

Indeed, for all nonnegative real numbers x, and for all n = 2, 4, 6, 8, . . . , we
have:

n
√
xn = |x|

EXERCISE 8

practice with
radicals

♣ 1. Consider this mathematical sentence:

For all real numbers x and y :

y = 3
√
x ⇐⇒ y3 = x (*)

This sentence compares two ‘component’ sentences. What are they? What
is (*) telling us that they have in common?

What is (*) telling us (if anything) when y = 2 and x = 8? How about
when y = −2 and x = 8?

♣ 2. Consider this mathematical sentence:

For all x ≥ 0 and for all real numbers y :

y =
√
x ⇐⇒ y ≥ 0 and y2 = x (**)

What two component sentences are being compared? What do they have
in common?

What is (**) telling us (if anything) when y = 2 and x = 4? How about
when y = −2 and x = 4?

Evaluate the following roots. Be sure to write complete mathematical sentences.
State any necessary restrictions on x and y.

♣ 3. 5
√
−32

♣ 4. 4
√

(−2)4

♣ 5.
6
√
x6

♣ 6.
9
√
x9
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fractional
exponent
notation

When working with radicals in calculus, it is usually more convenient to use
fractional exponent notation rather than radical notation.

Whenever n
√
x is defined, it can be alternately written as x

1
n .

Thus:

•
√

5 = 5
1
2

• 3
√
x = x1/3 for all real numbers x

• 4
√
x = x1/4 for all nonnegative real numbers x

Then, using properties of exponents (which are summarized below for your
convenience), one can make sense of arbitrary rational exponents:

x
p
q = (xp)

1
q = q
√
xp

or

x
p
q = (x

1
q )p = ( q

√
x)p ,

provided that both q
√
xp and ( q

√
x)p are defined. Use whichever representation

is easiest for a given problem.

PROPERTIES OF EXPONENTS

Assume that a, b, n and m are restricted to values for which each expression is defined.

am · an = am+n (same base, multiplied, add exponents)

am

an = am−n (same base, divided, subtract exponents)

(am)n = amn (power to a power, multiply exponents)

(ab)m = ambm (product to a power,
each factor gets raised to the power)

(ab )m = am

bm (quotient to a power,
both numerator and denominator get raised to the power)

a−n = 1
an (definition of negative exponents)

a0 = 1 for a 6= 0 (definition of zero exponent)

EXERCISE 9 ♣ Convince yourself that each of these exponent laws ‘makes sense’. Just look
at special cases, where convenient.

For example, for positive integers m and n :

am · an =

m factors of a︷ ︸︸ ︷
(a · . . . · a) ·

n factors of a︷ ︸︸ ︷
(a · . . . · a) =

m+n factors of a︷ ︸︸ ︷
am+n
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EXAMPLE

working with
fractional exponents

Problem: Rewrite using fractional exponent notation. State any necessary
restrictions on x and y. Where possible, write in two different ways.

1. y =
5
√
x3

2. f(x) =
√
x

3√
x5

x

Solutions:

1. y =
5
√
x3 = (x3)1/5 = x3·

1
5 = x3/5

2. Observe that D(f) = {x | x > 0}. For such x :

f(x) =

√
x

3
√
x5

x
=
x1/2(x5)1/3

x

=
x1/2x5/3

x
=
x

1
2+

5
3

x

=
x

3
6+

10
6

x
=
x

13
6

x
6
6

= x
13
6 −

6
6 = x7/6

= (x7)1/6 =
6
√
x7

Alternately, if desired:

x7/6 = (x1/6)7 = ( 6
√
x)7

All the steps were shown in the above display. You will probably be able
to do a number of these steps in your head.

properties of lnx Next, some properties of logarithms are reviewed.

a precise view
of functions

Whenever f is a function, then every input has a unique corresponding output.
In other words, whenever two inputs are the same (and perhaps just have
different names), then they must have the same output. Precisely, whenever f
is a function with domain elements a and b :

a = b =⇒ f(a) = f(b) (1)

Thus, whenever the sentence ‘a = b’ is true, so is the sentence ‘f(a) = f(b)’.

a precise view
of a 1−1 function

If f is, in addition, a 1−1 function, then every output has a unique correspond-
ing input. In other words, whenever two outputs are the same, then they must
have come from the same input. Precisely, whenever f is a 1−1 function with
domain elements a and b :

f(a) = f(b) =⇒ a = b (2)

Thus, whenever the sentence ‘f(a) = f(b)’ is true, so is the sentence ‘a =
b’. Putting (1) and (2) together, whenever f is a 1−1 function with domain
elements a and b :

a = b ⇐⇒ f(a) = f(b)

Thus, if two inputs are the same, so are the corresponding outputs (the function
condition); and whenever two outputs are the same, so are the corresponding
inputs (the 1−1 condition).
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EXAMPLE The function f(x) = ex is 1−1 and has domain R . Thus, for all real numbers
x and y :

x = y ⇐⇒ ex = ey

The function g(x) = lnx is 1−1 and has as its domain the set of positive real
numbers. Thus, for all positive real numbers x and y :

x = y ⇐⇒ lnx = ln y

ex and lnx
are inverse functions

In addition, recall that ex and lnx are inverse functions. Thus, a point (x, y)
lies on the graph of f(x) = ex exactly when the point (y, x) lies on the graph
of g(x) = lnx. That is, for all y > 0 and for all real numbers x :

y = ex ⇐⇒ x = ln y

We are now in a position to verify some important properties of logarithms,
which are summarized below for convenience:

PROPERTIES OF LOGARITHMS
Assume that a and b are restricted to values for which each expression is defined

ln(ab) = ln a+ ln b

ln
a

b
= ln a− ln b

ln ab = b ln a

sample proof The first equation says that the log of a product is the sum of the logs.

Here is its proof. The remaining proofs are left as exercises.

Let a > 0 and b > 0, so that all three expressions ln(ab), ln a, and ln b are
defined. Then:

y = ln a+ ln b ⇐⇒ ey = eln a+ln b (ex is a 1−1 function)

⇐⇒ ey = eln aeln b (properties of exponents)

⇐⇒ ey = ab (ex and lnx ‘undo’ each other)

⇐⇒ ln ey = ln ab (lnx is a 1−1 function)

⇐⇒ y = ln ab

Thus, the sentences y = ln a + ln b and y = ln ab always have the same truth
values. That is, ln ab = ln a+ ln b .

EXERCISE 10 ♣ 1. In words, what does

ln
a

b
= ln a− ln b

say? Prove it. Be sure to justify every step of your proof.

♣ 2. Prove that:
ln ab = b ln a

Be sure to write complete mathematical sentences, and justify every step
of your proof.
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QUICK QUIZ

sample questions

1. Differentiate f(x) =
√
x . Write the derivative using both prime notation,

and Leibniz notation.

2. TRUE or FALSE: d
dx ( π

√
2

7+
√
3
) = 0

3. TRUE or FALSE: The slope of the tangent line to the graph of y = x3 at
the point (2, 8) is 12. Show any work leading to your answer.

4. Expand (a− b)4, using Pascal’s Triangle.

5. Let g(x) = ex + lnx. Find g′(x).

KEYWORDS

for this section

Prime notation for the derivative, Leibniz notation for the derivative, the op-
erator d

dx , the derivative of a constant, constants can be ‘slid out’ of the differ-
entiation process, differentiating sums and differences, the Simple Power Rule
for differentiation, Pascal’s Triangle, differentiating ex and lnx, radicals and
fractional exponent notation, properties of lnx.

END-OF-SECTION
EXERCISES

♣ Differentiate the following functions. Feel free to use any tools developed in
this section.

♣ 1. f(x) = (2x+ 1)3

♣ 2. g(x) =
√
x+1
7
√
x

♣ 3. h(x) =

{
3x2 − 2x+ 1 x ≥ 1

4x− 2 x < 1

What is D(h)?
What is D(h′)?

♣ 4. h(x) =

{
3x2 − 2x+ 1 x ≥ 1

3x− 1 x < 1

What is D(h)?
What is D(h′)?


