4.7 Higher Order Derivatives

Introduction;
smooth functions

When a function f is differentiated, another function, f^{\prime}, is obtained. This new function f^{\prime} may itself be differentiable. Thus, in many cases, one may continually repeat the differentiation process, obtaining the so-called higher-order derivatives. This section presents the notation for higher-order derivatives.
If the graph of a function f has a kink at x, then f is not differentiable at x. Thus, if f is differentiable at every point in some interval, it must not have any kinks in this interval. In this sense, a differentiable function is smooth. Mathematicians use the word 'smooth' to describe the differentiability of a function, but the usage is not entirely consistent: to some, 'smooth' means oncedifferentiable; to others, 'smooth' means infinitely differentiable. In general, the more times a function is differentiable, the 'smoother' it is.

higher-order
derivatives;
notation
$f^{\prime}, f^{\prime \prime}, f^{\prime \prime \prime}$,
$f^{(4)}, \ldots, f^{(n)}$
infinitely
differentiable

The following prime notation is used for the higher-order derivatives:

$$
\text { differentiate } f \text { to get } f^{\prime} ; \quad f^{\prime} \text { is the (first) derivative of } f
$$

$$
\text { differentiate } f^{\prime} \text { to get } f^{\prime \prime} ; \quad f^{\prime \prime} \text { is the second derivative of } f
$$

$$
\text { differentiate } f^{\prime \prime} \text { to get } f^{\prime \prime \prime} ; \quad f^{\prime \prime \prime} \text { is the third derivative of } f
$$

$$
\text { differentiate } f^{\prime \prime \prime} \text { to get } f^{(4)} ; \quad f^{(4)} \text { is the fourth derivative of } f
$$

$$
\text { differentiate } f^{(4)} \text { to get } f^{(5)} ; \quad f^{(5)} \text { is the fifth derivative of } f
$$

$$
\vdots
$$

differentiate $f^{(n-1)}$ to get $f^{(n)} ; f^{(n)}$ is the $n^{\text {th }}$ derivative of f
The notation $f^{\prime \prime}$ can be read either as ' f double prime', or as 'the second derivative of f^{\prime}.
It gets unwieldy to count the number of prime marks, so it is conventional to change to a numerical superscript, in parentheses, from about the fourth derivative on. The notation $f^{(4)}$ is usually read as 'the fourth derivative of f '. Observe that the name of the $n^{\text {th }}$ derivative is $f^{(n)}$; this function, evaluated at x, is denoted by $f^{(n)}(x)$.

The functions $f^{\prime \prime}, f^{\prime \prime \prime}, f^{(4)}, \ldots$ are called the higher-order derivatives of f.
If a function f has the property that $f^{(n)}$ exists (and has the same domain as f) for all positive integers n, then we say that f is infinitely differentible.

EXERCISE 1 What is the prime notation for each of the following?
\& 1. the second derivative of g
$\& 2$. the second derivative of g, evaluated at x
\& 3 . the derivative of $f^{\prime \prime \prime}$
\& 4. the second derivative of $f^{(6)}$, evaluated at 3

EXAMPLE

Let $P(x)=2 x^{5}-x^{4}+2 x-1$. Then:

$$
\begin{aligned}
P^{\prime}(x) & =10 x^{4}-4 x^{3}+2 \\
P^{\prime \prime}(x) & =40 x^{3}-12 x^{2} \\
P^{\prime \prime \prime}(x) & =120 x^{2}-24 x \\
P^{(4)}(x) & =240 x-24 \\
P^{(5)}(x) & =240 \\
P^{(n)}(x) & =0, \quad \text { for } n \geq 6
\end{aligned}
$$

EXERCISE 2

Find all derivatives of:

$$
P(x)=2 x^{7}-x^{3}+4
$$

Be sure to write complete mathematical sentences.

It's a good exercise to differentiate an arbitrary polynomial

$$
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$

since this exercise offers an opportunity to introduce some important summation and factorial notation. So this is our next project. First, summation notation is introduced.
summation
notation;
$\sum_{j=s}^{e} a_{j}$
the index of the sum is a dummy variable

EXAMPLE

using
summation notation

Summation notation gives a convenient way to display a sum, when the terms share some common property.
For nonnegative integers s ('start') and e ('end') with $s<e$, one defines:

$$
\sum_{j=s}^{e} a_{j}:=a_{s}+a_{(s+1)}+\cdots+a_{(e-1)}+a_{e}
$$

The symbol $\sum_{j=s}^{e} a_{j}$ is read as: the sum, as j goes from s to e, of a_{j}.
In particular, if $s=1$ and $e=n$ one gets:

$$
\sum_{j=1}^{n} a_{j}=a_{1}+a_{2}+\cdots+a_{n-1}+a_{n}
$$

The variable j in the above notation is called the index of the sum; observe that once the sum is expanded, this index j no longer appears. In this sense, it is a dummy variable, and we need not be restricted to use of the letter j for this role. Traditionally, the letters i, j, k, m and n are used as indices for summation, precisely because of the strong convention dictating that these letters denote integer variables.
When summation notation appears in text (as opposed to in a display), it usually looks like this: $\sum_{j=1}^{n} a_{j}$. This way, it is not necessary to put extra space between the lines to make room for the ' $j=1$ ' and ' n '.

For example,

$$
\sum_{i=3}^{7} a_{i}=a_{3}+a_{4}+a_{5}+a_{6}+a_{7}
$$

and:

$$
\sum_{k=2}^{5}(k-3)^{k}=(2-3)^{2}+(3-3)^{3}+(4-3)^{4}+(5-3)^{5}
$$

Also:

$$
\sum_{j=1}^{4} 5=\overbrace{5}^{j=1}+\overbrace{5}^{j=2}+\overbrace{5}^{j=3}+\overbrace{5}^{j=4}=4 \cdot 5=20
$$

The sum

$$
1+2+\ldots+207
$$

could be written as:

$$
\sum_{k=1}^{207} k \quad \text { or } \quad \sum_{n=1}^{207} n \quad \text { or } \quad \sum_{m=1}^{207} m
$$

However, don't write something like $\sum_{i=1}^{207} k$, unless you really want the expression below!

$$
\sum_{i=1}^{207} k=\overbrace{k+k+\cdots+k}^{207 \text { times! }}=207 k
$$

EXERCISE 3
practice with summation notation
\& 1. Expand the following sums. (You need not simplify the resulting sums.)

$$
\sum_{j=1}^{6} b_{j}, \quad \sum_{k=1}^{5}(k+1)^{k}, \quad \sum_{m=0}^{4}(m+1), \quad \sum_{i=1}^{n} 2 i
$$

\& 2. Write the sum $\sum_{i=1}^{n} 2 i$ using a different index.
\& 3 . Let k be a constant. Prove that:

$$
\sum_{j=1}^{n} k a_{j}=k \sum_{j=1}^{n} a_{j}
$$

(Thus, you can 'slide' constants out of a sum.) Be sure to write complete mathematical sentences.
\& 4. Write the following sums using summation notation:

$$
\begin{gathered}
1+2+3+\cdots+100 \\
34+35+36+\cdots+79 \\
2+4+6+\cdots+78 \\
5^{2}+6^{3}+7^{4}+8^{5}+\cdots+20^{17}
\end{gathered}
$$

\& 5. Prove the following statement:

$$
\frac{d}{d x} \sum_{i=1}^{n} f_{i}(x)=\sum_{i=1}^{n} f_{i}^{\prime}(x)
$$

You may assume that the functions f_{i} are all differentiable at x. Be sure to write complete mathematical sentences, and justify each step of your proof.
polynomials are infinitely differentiable
factorial notation, k !

Now, let $P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ be an arbitrary $n^{t h}$ order polynomial (so, $a_{n} \neq 0$). Using summation notation, one can write:

$$
P(x)=\sum_{i=0}^{n} a_{i} x^{i}
$$

(Recall that $x^{0}=1$.) Differentiating once (and using the fact that the derivative of a sum is the sum of the derivatives) yields:

$$
\begin{aligned}
P^{\prime}(x) & =\sum_{i=0}^{n} i \cdot a_{i} x^{i-1} \\
& =\sum_{i=1}^{n} i \cdot a_{i} x^{i-1}
\end{aligned}
$$

The index changed from a starting value of 0 to a starting value of 1 since when $i=0$ the term $i \cdot a_{i} x^{i-1}$ vanishes, and hence contributes nothing to the sum. Continuing:

$$
\begin{aligned}
P^{\prime \prime}(x) & =\sum_{i=2}^{n} i(i-1) a_{i} x^{i-2} \\
P^{\prime \prime \prime}(x) & =\sum_{i=3}^{n} i(i-1)(i-2) a_{i} x^{i-3} \\
& \vdots \\
P^{(j)}(x) & =\sum_{i=j}^{n} i(i-1)(i-2) \cdots(i-(j-1)) a_{i} x^{i-j} \quad \text { for } 1 \leq j \leq n
\end{aligned}
$$

The previous formula for $P^{(j)}$ can be cleaned up a bit by using factorial notation, discussed next.
For a positive integer k, one defines:

$$
k!:=k(k-1)(k-2) \cdots(1)
$$

The expression ' k !' is read as ' k factorial'. By definition, 0 ! $=1$.
For example: $3!=3 \cdot 2 \cdot 1=6$ and $200!=200 \cdot 199 \cdot 198 \cdot \ldots \cdot 2 \cdot 1$
The product $20 \cdot 19 \cdot 18 \cdot \ldots \cdot 5$ can be written in factorial notation, if one first multiplies by 1 in an appropriate form:

$$
\begin{aligned}
20 \cdot 19 \cdot 18 \cdot \ldots \cdot 5 & =20 \cdot 19 \cdot 18 \cdot \ldots \cdot 5 \cdot \frac{4 \cdot 3 \cdot 2 \cdot 1}{4 \cdot 3 \cdot 2 \cdot 1} \\
& =\frac{20 \cdot 19 \cdot 18 \cdot \ldots \cdot 1}{4 \cdot 3 \cdot 2 \cdot 1} \\
& =\frac{20!}{4!}
\end{aligned}
$$

This technique is used below, in order to 'clean up' the expression for $P^{(j)}$.
'cleaning up' the expression for $P^{(j)}$

Using the same 'multiply by 1 in an appropriate form' technique illustrated above, one gets:

$$
\begin{aligned}
i(i-1)(i-2) & \cdots(i-(j-1)) \\
& =i(i-1)(i-2) \cdots(i-(j-1)) \cdot \frac{(i-j)(i-(j+1)) \cdots(1)}{(i-j)(i-(j+1)) \cdots(1)} \\
& =\frac{i!}{(i-j)!} \quad \text { for } i \geq j
\end{aligned}
$$

Thus, all the derivatives of an arbitrary $n^{\text {th }}$ order polynomial P can be expressed as:

$$
P^{(j)}(x)= \begin{cases}\sum_{i=j}^{n} \frac{i!}{(i-j)!} a_{i} x^{i-j} & \text { for } 1 \leq j \leq n \\ 0 & \text { for } j>n\end{cases}
$$

Observe that although this notation is extremely compact, it can (especially for a beginner) make an easy idea seem difficult. For experts, however, the compactness of this notation can be extremely beneficial.

EXERCISE $4 \quad$ Let $P(x)=\sum_{i=0}^{3} a_{i} x^{i}$.

\& 1. Expand this sum. How many terms does P have?
\& 2. Show that

$$
P^{\prime}(x)=\sum_{i=1}^{3} i \cdot a_{i} x^{i-1}
$$

by expanding the sum, and verifying that it does indeed give a correct formula for P^{\prime}.
\& 3. Find formulas for $P^{\prime \prime}$ and $P^{\prime \prime \prime}$, in summation notation.
\&) 4. What is $P^{(n)}$, for $n \geq 4$?

EXERCISE 5

practice with factorial notation
\& 1. Express the following numbers as products. It is not necessary to multiply out these products.

$$
5!, \quad 0!, \quad 100!
$$

\& 2. Write the following products using factorial notation:

$$
\begin{gathered}
10 \cdot 9 \cdot 8 \cdot \ldots \cdot 2 \cdot 1 \\
207 \cdot 206 \cdot 205 \cdot \ldots \cdot 1
\end{gathered}
$$

\& 3. Write the following product using factorial notation:

$$
105 \cdot 104 \cdot 103 \cdot \ldots \cdot 50
$$

Leibniz notation for higher-order derivatives

Here is the Leibniz notation for higher-order derivatives. Let y be a function of x. Then:

$$
\begin{array}{rlrl}
\frac{d}{d x}(y) & =\frac{d y}{d x} & \text { is the first derivative } \\
\frac{d}{d x}\left(\frac{d y}{d x}\right) & =\frac{d^{2} y}{d x^{2}} & \text { is the second derivative } \\
\frac{d}{d x}\left(\frac{d^{2} y}{d x^{2}}\right) & =\frac{d^{3} y}{d x^{3}} \quad \text { is the third derivative } \\
& \vdots \\
\frac{d}{d x}\left(\frac{d^{n-1}}{d x^{n-1}}\right) & =\frac{d^{n} y}{d x^{n}} \quad \text { is the } n^{t h} \text { derivative }
\end{array}
$$

If one wishes to emphasize that the derivative $\frac{d^{n} y}{d x^{n}}$ is being evaluated at a specific value of x, say $x=c$, then one can write either:

$$
\frac{d^{n} y}{d x^{n}}(c) \quad \text { or }\left.\quad \frac{d^{n} y}{d x^{n}}\right|_{x=c}
$$

At first glance, the lack of symmetry in this notation is disturbing: for example, why should we write $\frac{d^{2} y}{d x^{2}}$, and not the more symmetric $\frac{d^{2} y}{d^{2} x}$?

However, it should be clear from the process illustrated above why this 'unsymmetry' arises. At the $n^{\text {th }}$ step, one 'sees' n 'factors' of d upstairs, hence $d^{n} y$. Also, at the $n^{t h}$ step, one 'sees' n 'factors' of $d x$ downstairs, hence $(d x)^{n}$, shortened to the simpler notation $d x^{n}$. (After all, it is only notation, so we want it to be as simple as possible, without sacrificing clarity.)

EXERCISE $6 \quad$ What is the Leibniz notation for each of the following?
\& 1. the second derivative of y (where y is a function of x)
\& 2. the second derivative of y (where y is a function of t)
\& 3. the second derivative of g (where g is a function of x)
\& 4. the second derivative of g, evaluated at 2
\& 5. the derivative of $\frac{d^{3} y}{d x^{3}}$
\& 6. the second derivative of $\frac{d^{3} y}{d x^{3}}$, evaluated at 3

EXERCISE 7

In problems (1) and (2), find the second derivative of the given function. Use any appropriate notation.
\& 1. $y=\frac{x}{e^{x}}$
\& 2. $f(x)=\frac{1}{x-1}+\frac{1}{x-2}$
\& 3. Find the equation of the tangent line to the graph of the first derivative of $f(x)=\frac{x}{e^{x}}$ at $x=0$.

QUICK QUIZ
sample questions

1. What is meant by the phrase, 'the higher derivatives of a function f '?
2. Write the second derivative of f, evaluated at x, using both prime notation and Leibniz notation.
3. Expand the sum: $\sum_{i=1}^{3} i^{i+1}$
4. Write $10 \cdot 9 \cdot 8 \cdot 7 \cdot 6$ using factorial notation.
5. State that 'the derivative of a sum is the sum of the derivatives', using summation notation.

KEYWORDS
for this section

Smooth functions, higher-order derivatives, prime notation for higher-order derivatives, infinitely differentiable, summation notation, factorial notation, Leibniz notation for higher-order derivatives.

END-OF-SECTION EXERCISES
\% Classify each entry below as an expression (EXP) or a SENTENCE (SEN).
\& For any sentence, state whether it is TRUE, FALSE, or CONDITIONAL.

1. If f is differentiable at x, then the number $f^{\prime}(x)$ gives the slope of the tangent line to the graph of f at the point $(x, f(x))$.
2. If f is differentiable at x, then the limit $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ exists, and gives the slope of the tangent line to the graph of f at the point $(x, f(x))$.
3. $f^{\prime}(x)$
4. $f^{\prime}(3)$
5. $f^{\prime}(x)=2 x$
6. $y^{\prime}=3$
7. If f and g are differentiable at x, then $\frac{d}{d x}(f(x)+g(x))=f^{\prime}(x)+g^{\prime}(x)$.
8. If f is differentiable at c, then $f^{\prime}(c)=\frac{d f}{d x}(c)$.
9. $\ln a b$
10. For $a>0$ and $b>0, \ln a b=\ln a+\ln b$.
11. $f^{\prime}(g(x)) \cdot g^{\prime}(x)$
12. $\frac{d}{d x} f(g(x))=f^{\prime}(g(x)) \cdot g^{\prime}(x)$
13. $10 \cdot 9 \cdot 8 \cdot \ldots \cdot 1$
14. $10!=10 \cdot 9 \cdot 8 \cdot \ldots \cdot 1$
15. $\sum_{i=0}^{3} i=6$
16. $\sum_{j=1}^{n} a_{j}$
17. If f is differentiable at c, then $f^{\prime}(c)=2$.
18. f is differentiable at c if and only if f is continuous at c
