
5.5 More Graphing Techniques

graphing
polynomials

Since polynomials are infinitely differentiable, the only critical points and can-
didates for inflection points arise from places where P ′ and P ′′ are equal to
zero. If P ′ and P ′′ can be factored, then their zeroes are easy to find; if not,
the zeroes can be approximated using the Intermediate Value Theorem.

In this section, some techniques concerned with factoring polynomials are re-
viewed. Most of these techniques should be familiar to you from algebra, and
are merely gathered here for your convenience. We begin by studying quadratic
polynomials.

factorable
over the integers

Let P (x) = ax2 + bx + c, a 6= 0, be a quadratic polynomial. The polynomial
P is ‘factorable over the integers’ if

P (x) = (K1x + K2)(K3x + K4) ,

where the Ki are all integers.

Thus, P (x) = 2x2 + 5x − 3 = (2x − 1)(x + 3) is factorable over the integers,

but P (x) = x2 − 2 = (x +
√

2)(x−
√

2) is not factorable over the integers.

factoring
x2 + bx + c,
b and c integers

If P (x) = x2 + bx+ c, where the coefficient of the x2 term is 1, then one usually
takes the approach illustrated below to try and factor P :

Problem: Factor P (x) = x2 + x− 6 .

Solution: A factorization of P must be of the form:

x2 + x− 6 = (x + A)(x + B) = x2 + (

must = 1︷ ︸︸ ︷
A + B )x +

must =−6︷︸︸︷
AB

Thus, one seeks integers A and B that multiply together to give −6 (the con-
stant term), and that add together to give 1 (the coefficient of the x term). In
this case, taking A = 3 and B = −2 work, so that:

x2 + x− 6 = (x + 3)(x− 2)

When a 6= 1, a similar approach can be taken, and is discussed next.

factoring ax2 + bx + c,
integer coefficients

Suppose that P (x) = ax2 + bx + c, a 6= 0, has integer coefficients, and is
factorable over the integers. That is, suppose there exist integers K1, K2, K3

and K4 for which:

ax2 + bx + c = (K1x + K2)(K3x + K4)

=

a︷ ︸︸ ︷
K1K3 x

2 + (

b︷ ︸︸ ︷
K2K3︸ ︷︷ ︸
:=A

+K1K4︸ ︷︷ ︸
:=B

)x +

c︷ ︸︸ ︷
K2K4 (multiplying out)

320
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Defining A := K2K3 and B := K1K4, we see that

AB = (K2K3)(K1K4) = (K1K3)(K2K4) = ac

and:
A + B = K2K3 + K1K4 = b

What is all this saying? It says that:

Whenever a polynomial ax2 + bx+ c is factorable over the integers, we can find
integers A and B, where AB = ac and A + B = b, that (we’ll see) can be used
to factor the polynomial for us!

The technique is illustrated in the next example.

EXAMPLE

factoring a
quadratic, a 6= 1

Problem: Factor 8x2 − 10x− 3 .

Solution: We seek integers A and B satisfying

AB = (coefficient of x2 term) · (constant term)

and:
A + B = coefficient of x term

Thus, we want:

AB = (8)(−3) = −24 and A + B = −10

Choosing A = −12 and B = 2 works. Then:

8x2 − 10x− 3 = 8x2 + (2x− 12x)− 3 (rewrite middle term)

= (8x2 + 2x) + (−12x− 3) (regroup)

= 2x(4x + 1)− 3(4x + 1) (factor each group)

= (2x− 3)(4x + 1) (factor out (4x + 1))

Note that when the middle term is rewritten as a sum, the order does not
matter :

8x2 − 10x− 3 = 8x2 + (−12x + 2x)− 3 (rewrite middle term)

= (8x2 − 12x) + (2x− 3) (regroup)

= 4x(2x− 3) + (2x− 3) (factor each group)

= (4x + 1)(2x− 3) (factor out (2x− 3))

EXERCISE 1 Use the technique described above to factor the following quadratics.

♣ 1. 3x2 + 2x− 1

♣ 2. 10x2 − 13x− 3

♣ 3. 14x2 + 19x− 3
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F

When is ax2 + bx + c,
with integer
coefficients,
factorable
over the integers?

Here’s a precise statement of the factoring result discussed above:

THEOREM. Let P (x) = ax2 + bx + c have integer coefficients, a 6= 0 . Then,
P is factorable over the integers if and only if there exist integers A and B with
AB = ac and A + B = b .

Idea of Proof. It has already been shown that if P is factorable over the
integers, then integers A and B with the desired property exist.

The other direction uses the fact that a polynomial with integer coefficients
is factorable over Z iff it is factorable over Q (see, e.g., John B. Fraleigh,
A First Course in Abstract Algebra, third edition, page 280). Suppose integers
A and B exist with AB = ac and A+B = b . If c = 0, then ax2+bx = x(ax+b)
is factorable over Z . Suppose c 6= 0 . Then, since a 6= 0, and AB = ac, both A
and B are nonzero. Further, AB = ac =⇒ A

a = c
B . Then:

ax2 + bx + c = ax2 + (A + B)x + c

= (ax2 + Ax) + (Bx + c)

= ax(x +
A

a
) + B(x +

c

B
)

= (ax + B)(x +
c

B
)

Thus, P is factorable over Q, and hence over Z .

a technique that
always works;

using the
quadratic formula

The quadratic formula can always be used to factor any quadratic polynomial,
whether or not it is factorable over the integers. Recall that the quadratic
formula says that the equation ax2 + bx + c = 0, a 6= 0, has solutions x1 and
x2 given by:

x1,2 =
−b±

√
b2 − 4ac

2a

The ‘+’ sign gives one solution; the ‘−’ sign gives the second solution.

These zeroes provide the factors of the polynomial:

ax2 + bx + c = a(x− x1)(x− x2)

Note that you must supply the constant factor a yourself.

EXAMPLE

factoring a
quadratic by using
the quadratic formula

Problem: Factor 8x2 + 5x− 3, using the quadratic formula.

Solution: First, find the roots of this quadratic. That is, solve:

8x2 + 5x− 3 = 0

By the quadratic formula:

x1,2 =
−5±

√
52 − 4(8)(−3)

2(8)

= −1 ,
3

8
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Since −1 is a root, x− (−1) = x + 1 is a factor.

Since 3
8 is a root, x− 3

8 is a factor.

Only the constant factor need be supplied:

8x2 + 5x− 3 = 8(x + 1)(x− 3

8
)

= (x + 1)8(x− 3

8
)

= (x + 1)(8x− 3)

♣ Use the technique discussed earlier to factor 8x2 + 5x− 3 .

EXERCISE 2 ♣ Use the quadratic formula to factor each polynomial from Exercise 1.

EXAMPLE

graphing a
more complicated
polynomial

Problem: Completely graph f(x) = (x− 1)2(2x + 3)x .

• Plot a few points:

• Find the first derivative. Use the ‘generalized product rule’: d
dx (ABC) =

A′BC + AB′C + ABC ′

f ′(x) = 2(x− 1)(2x + 3)x + (x− 1)2(2)x + (x− 1)2(2x + 3)(1)

= (x− 1)
[
2x(2x + 3) + 2x(x− 1) + (x− 1)(2x + 3)

]
= (x− 1)(8x2 + 5x− 3)

= (x− 1)(x + 1)(8x− 3)

Thus, f ′(x) = 0 when x = 1, −1, 3
8 . Find the corresponding function

values, and add these points to the table of points started above. Plot the
points with a × .

• Find the second derivative:

f ′′(x) = (1)(x + 1)(8x− 3) + (x− 1)(1)(8x− 3) + (x− 1)(x + 1)(8)

= 24x2 − 6x− 8

= 2(12x2 − 3x− 4)

Using the quadratic formula, the solutions of 12x2 − 3x− 4 = 0 are:

x1 =
3 +
√

201

24
≈ 0.72 and x2 =

3−
√

201

24
≈ −0.47

Find the corresponding function values, and plot these points with a ×× .



324 copyright Dr. Carol JV Fisher Burns http://www.onemathematicalcat.org

• Sign of f ′′:

Use this concavity information to fill in the graph.

• Behavior at infinity: As x→ ±∞, f(x) ≈ 2x4 →∞, which agrees with the
graph.

some final results The remainder of this section is a collection of useful results and techniques
concerning polynomials. These may be familiar to you from algebra. They are
merely gathered here for your convenience.

RATIONAL ROOT
THEOREM

Let P (x) = anx
n+· · ·+a2x

2+a1x+a0 be a polynomial with integer coefficients.
Suppose that an 6= 0 and a0 6= 0 .

If P has a rational zero p
q (in lowest terms), then p is a factor of a0 and q is a

factor of an .

What if a0 = 0? Observe that if a0 = 0 and a1 6= 0, then:

P (x) = x(

P̃ (x)︷ ︸︸ ︷
anx

n−1 + · · ·+ a2x + a1)

Apply the Rational Root Theorem to P̃ (x).

F
PROOF

of the
Rational Root
Theorem

Proof. The notation a|b (read as ‘a divides b’) means that a is a factor of b .
Suppose p

q is a rational root in lowest terms, so:

an(
p

q
)n + an−1(

p

q
)n−1 + · · ·+ a1(

p

q
) + a0 = 0

Multiplication by qn yields:

anp
n + an−1p

n−1q + · · ·+ a1pq
n−1 + a0q

n = 0 (*)

Observe that all terms except the last have a factor of p . Then:

p(anp
n−1 + · · ·+ a1q

n−1) = −a0qn

Since p divides the left-hand side, it must divide the right-hand side. But p 6 | q,
so p 6 | qn, so it must be that p|a0 .

For the remaining result, observe that every term in (*) except the first has a
factor of q. Repeat the argument, with obvious changes.

negating
‘A and B’

The Rational Root Theorem is an implication (with some additional hypothe-
ses):

IF P has a rational zero p
q (in lowest terms),

THEN (p is a factor of a0) and (q is a factor of an).

The conclusion of this implication is a sentence of the form ‘A and B’. Thus,
to find the contrapositive of this implication, one must negate ‘A and B’. How
is this done?
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Use your intuition: ‘A and B’ is true only when both A and B are true. So
when is ‘A and B’ false? When A is false, or B is false. Precisely,

not(A and B) ⇐⇒ (notA) or (notB) ,

as the truth table below confirms:

logical symbols:

∧ for ‘and’
∨ for ‘or’
¬ for ‘not’

DeMorgan’s laws

The sentence ‘A and B’ can be written as A ∧B. The symbol ∧ is a synonym
for the mathematical word ‘and’.

The sentence ‘A or B’ can be written as A ∨ B. The symbol ∨ is a synonym
for the mathematical word ‘or’.

The sentence ‘notA’ can be written as ¬A . The symbol ¬ is a synonym for the
mathematical word ‘not’.

With this notation, the previous logical equivalence can be more simply written
as:

¬(A ∧B) ⇐⇒ (¬A) ∨ (¬B)

In the next exercise, you are asked to prove that:

¬(A ∨B) ⇐⇒ (¬A) ∧ (¬B)

These two logical equivalences are commonly known as DeMorgan’s Laws.

EXERCISE 3 ♣ Prove that:
¬(A ∨B) ⇐⇒ (¬A) ∧ (¬B)

That is, make a truth table which shows that ¬(A∨B) and (¬A)∧(¬B) always
have the same truth values.

Now, the contrapositive of the sentence:

IF P has a rational zero p
q (in lowest terms),

THEN (p is a factor of a0) and (q is a factor of an)

is:

IF (p is not a factor of a0) or (q is not a factor of an),
THEN p

q is not a zero of P

This latter sentence tells us that the only candidates for rational roots of P are
numbers of the form p

q , where p is a factor of the constant term, and q is a factor

of the leading coefficient. The next example illustrates how this information is
used.

EXAMPLE

using the
Rational Root Theorem

Problem: Find all rational roots of P (x) = 14x4−x3− 17x2 +x+ 3 . Use these
roots to factor P as completely as possible.

Solution: The leading coefficient is 14, with factors: ±1, ±2, ±7, ±14

The constant term is 3, with factors: ±1 and ±3
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Thus, if p
q is a root of P , it must be that:

p ∈ {±1, ±3} and q ∈ {±1, ±2, ±7, ±14}

That is:
p

q
∈ {±1, ±1

2
, ±1

7
, ± 1

14
, ±3, ±3

2
, ±3

7
, ± 3

14
}

Each candidate is checked:

P (1) = 14(1)4 − 13 − 17(1)2 + 1 + 3 = 0 (root 1, factor x− 1)

P (−1) = 14(−1)4 − (−1)3 − 17(−1)2 + (−1) + 3 = 0 (root −1, factor x + 1)

P (
1

2
) = · · · = 0 (root

1

2
, factor x− 1

2
)

P (−1

2
) = · · · 6= 0 (−1

2
is not a root)

...

Continuing, it is found that P (1) = P (−1) = P (− 3
7 ) = P ( 1

2 ) = 0. This
information is used to factor P :

P (x) = 14(x− 1

2
)(x +

3

7
)(x− 1)(x + 1)

= 2(x− 1

2
)7(x +

3

7
)(x− 1)(x + 1)

= (2x− 1)(7x + 3)(x− 1)(x + 1)

Note that we had to supply the constant factor of 14 ourselves.

EXAMPLE

using the
Rational Root Theorem

Problem: Find all rational roots of P (x) = x4 − 2x2 − 3x− 2 . Use these roots
to factor P as completely as possible.

Solution: If p
q is a rational root, then:

p ∈ {±1, ±2} and q ∈ {±1}

Thus:
p

q
∈ {±1, ±2}

Indeed:

P (1) = 1− 2− 3− 2 6= 0

P (−1) = 1− 2 + 3− 2 = 0

P (2) = 16− 8− 6− 2 = 0

P (−2) = 16− 8 + 6− 2 6= 0
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Thus, −1 and 2 are roots, so:

P (x) = (x + 1)(x− 2)(????) = (x2 − x− 2)(????)

Use long division to find the remaining factor:

Thus:
P (x) = (x + 1)(x− 2)(x2 + x + 1)

An application of the quadratic formula shows that the roots of x2 + x + 1
are not real numbers. Thus, P cannot be factored any further, using only real
numbers.

EXERCISE 4 ♣ 1. Refer to the previous example. Find two more polynomials, different
from P , that have precisely the same candidates for rational roots. (Hint:
Only the leading coefficient and the constant term are used to find the
candidates.)

♣ Use the rational root theorem to find all rational roots of the following
polynomials. Use this information to factor the polynomial as completely as
possible.

♣ 2. 5x3 − 3x2 − 12x− 4

♣ 3. 4x4 + 5x3 − 2x2 + 5x− 6

♣ 4. 3x4 − x3 + 12x2 − 4x (Hint: First factor out an x. Then, apply the
Rational Root Theorem to the remaining polynomial.)

SYNTHETIC
DIVISION

Finding P (x)
x−c via long division involves a lot of redundancy. Synthetic division

suppresses all this redundancy and results in a useful tool for factoring. The
process is illustrated below.

Here’s how synthetic division is used to compute
P (x)

x− c
:
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• Make sure P is written with decreasing powers of x.

• Write down the coefficients of P . Be sure to include 0 for any missing
terms.

• To divide by x−c, put the number ‘c’ in a box to the left of the coefficients.

For example, to divide by x− 2, put a ‘2’ in the box. To divide by x+ 3 =
x− (−3), put a ‘−3’ in the box.

• Bring down the first coefficient.

• Multiply by c, and add to the next coefficient of P , as shown.

• Repeat as necessary. You have now computed

P (x)

x− c
= Q(x) +

R

x− c
⇐⇒ P (x) = (x− c)Q(x) + R ;

you need only read off the coefficients of Q and the remainder R.

The last number computed is the remainder R. The preceding numbers are
the coefficients of Q. Observe that the degree of Q is always one less than
the degree of R.

REMAINDER
THEOREM

If P is a polynomial and P (x) = (x− r)Q(x) + R, then P (r) = R .

The proof is trivial! P (r) = (r − r)Q(r) + R = 0 ·Q(r) + R = R .

Usually, to evaluate a polynomial at a number r, we substitute r into the formula
for P and crunch away. This theorem gives an alternate approach! It says that,
to evaluate P at r, one can instead divide P (x) by x − r; the remainder is
precisely P (r) .

The Remainder Theorem, together with synthetic division, gives an efficient
way to evaluate polynomials, as illustrated next.

EXAMPLE

using synthetic
division and
the Remainder Theorem
to evaluate polynomials

Problem: Evaluate P (x) = 14x4 − x3 − 17x2 + x + 3 at x = 1 and x = −2 .

Solution: To find P (1), use synthetic division to divide by x− 1 :

The remainder is 0, so P (1) = 0 . Checking:

P (1) = 14− 1− 17 + 1 + 3 = 0

To find P (−2), use synthetic division to divide by x + 2 :

The remainder is 165 . Thus, P (−2) = 165 . This was considerably easier than
computing:

P (−2) = 14(−2)4 − (−2)3 − 17(−2)2 + (−2) + 3
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EXERCISE 5 Use synthetic division and the Remainder Theorem to evaluate the following
polynomial at the specified values of x.

♣ P (x) = x4 − 2x2 − 3x− 2; x = 1, −1, 2, −2

Two additional tools for gaining information about the zeroes of polynomials
are Descartes’ Rule of Signs and the Upper and Lower Bound Theorem. Check
your algebra book for more information.

QUICK QUIZ

sample questions

1. Factor 3x2−2x−8, by first finding numbers A and B that satisfy AB = ???
and A + B = ???

2. Factor 3x2 − 2x− 8, by using the Quadratic Formula.

3. What are the candidates for the rational roots of P (x) = x7 − 2x5 + 2 ?

4. Negate: A and B

5. Use the Remainder Theorem to find P (1) if P (x) = x5 − 3x2 + 2x− 1 .

KEYWORDS

for this section

Factorable over the integers, techniques for factoring ax2 + bx + c, using the
quadratic formula to factor ax2+bx+c, the Rational Root Theorem, the symbols
∧, ∨, ¬, negating A ∧ B and A ∨ B, DeMorgan’s Laws, synthetic division, the
Remainder Theorem.

END-OF-SECTION
EXERCISES

♣ Use all available techniques to factor the following polynomials as completely
as possible over R .

1. P (x) = 2x3 − 3x2 − 3x− 5

2. P (x) = 2x6 − 4x5 + 3x4 − 2x3 + x2

3. P (x) = x4 − 5x2 + 6

4. P (x) = x3 + x2 − x


