
6.1 Antiderivatives

undoing
differentiation

In the previous sections, the focus has been on differentiating a given function:
given f , find f ′.

The question for the current chapter is this: given a function f , find another
function F whose derivative is f . That is, given f , we seek F such that F ′ = f .
So, in a sense, we are undoing differentiation.

a preliminary
example

Let f(x) = 3 . We want another function whose derivative is f . That is, we
seek a function F satisfying F ′(x) = f(x) = 3 .

Clearly, F (x) = 3x works, since in this case F ′(x) = 3 .

Also, F (x) = 3x + 1 works, since again F ′(x) = 3 .

Indeed, for any real number C, F (x) = 3x + C is a function whose derivative
is 3 .

the equation
F (x) = 3x + C
describes an
ENTIRE CLASS
of functions

Observe that the equation F (x) = 3x+C describes an entire class of functions
which have the same shape, but are translated up and down in the xy-plane.
There is one function for each choice of the number C.

What does
ANY function
with derivative 3
look like?

an application
of the
Mean Value Theorem

Are there any functions other than those of the form F (x) = 3x + C whose
derivative is 3? We will see momentarily that the answer is ‘No’.

Here’s the way mathematicians address such a question: they suppose there is
a function with derivative 3, and then proceed to show that it must actually be
of the form 3x + C.

Whenever derivative information is to be used to glean information about the
function itself, you should not be surprised to see the Mean Value Theorem.
Make sure you see how the Mean Value Theorem plays a crucial role in the next
argument.

Suppose G is
ANY function with
derivative 3 ...

Let F (x) = 3x+C, where C is any real number. Suppose that G is any function
with derivative 3. Observe that we are not assuming that G must be of the
form G(x) = 3x + C.

Then, we have both
F ′(x) = 3 and G′(x) = 3 ,

so that:
G′(x)− F ′(x) = 0

342



copyright Dr. Carol JV Fisher Burns http://www.onemathematicalcat.org 343

Since the sum of the derivatives is the derivative of the sum, we can alternately
write:

(G− F )′(x) = 0

Now recall a result from the end of Chapter 4 . There, we learned that if the
derivative of a function is zero, then the function must be constant: this was
an application of the Mean Value Theorem. Thus, we must have

(G− F )(x) = K

for some constant K. That is,

G(x)− F (x) = K ,

or:
G(x) = F (x) + K = (3x + C) + K

... then, G must
be of the form
3x + C

Thus, we see that G must actually be of the form 3x + (some constant). It has
therefore been established that every function with derivative 3 must look like
3x + C for some constant C.

the derivative
of a function
completely
determines
its shape

The preceding argument is now generalized slightly. Suppose that functions f
and g are both differentiable (say on an open interval (a, b)), and suppose that:

f ′(x) = g′(x) ∀ x ∈ (a, b)

Then,
(f − g)′(x) = f ′(x)− g′(x) = 0 ,

so that (f − g)(x) = C for some constant C. That is,

f(x)− g(x) = C ,

and hence:
f(x) = g(x) + C

Thus, if two functions f and g have the same derivative, then they differ by at
most a constant. That is, functions that have the same derivative must have
the same shape. The functions f and g might not be the same function, but
the graph of one can be obtained from the graph of the other by a vertical
translation.

In other words, specifying the derivative of a function completely determines its
shape.

EXERCISE 1 ♣ Let f(x) = −1. Find all functions F for which F ′ = f . How many are there?
Sketch a few such functions F .
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EXERCISE 2 Consider the function f with graph shown below. Note that D(f) = R− {c}.
Sketch the graph of a function F satisfying each of the following properties:

♣ 1. F is continuous on R, and F ′(x) = f(x) for all x ∈ D(f)

♣ 2. Sketch another, different, function F satisfying the requirements above.

♣ 3. D(F ) = D(f), F ′(x) = f(x) for all x ∈ D(f), and F has a removable
discontinuity at c

♣ 4. D(F ) = D(f), F ′(x) = f(x) for all x ∈ D(f), and F has a nonremovable
discontinuity at c

EXERCISE 3 ♣ Consider the function f shown below. On the same graph, sketch two different
functions that have the same derivative as f .

DEFINITION

antiderivative;

arbitrary constant

A function F is called an antiderivative of a function f if

F ′(x) = f(x)

for every x in the domain of f .

Thus, an antiderivative of f is a function whose derivative is f .

If you are able to find a single antiderivative of f , call it F , then there are an
infinite number of antiderivatives, each of the form:

F (x) + C

Here, C represents any real number, and is called an arbitrary constant.

NOTATION
for antiderivatives:

indefinite integrals;

antidifferentiation;

integral sign;

integrand

The symbol ∫
f(x) dx

is called the indefinite integral of f , and represents all the antiderivatives of f .

The process of finding
∫
f(x) dx is called antidifferentiation (“undoing” differ-

entiation!)

The symbol
∫

is called the integral sign.

The function f that is being integrated is called the integrand.



copyright Dr. Carol JV Fisher Burns http://www.onemathematicalcat.org 345∫
and dx are

an instruction pair
It may be helpful to view the integral sign

∫
and the symbol dx as an inseparable

instruction pair. The function of x (call it f) whose antiderivatives are desired
is placed between the symbols

∫
and dx. The instruction is then to find all

functions, whose derivatives with respect to x, equal f .

more notation:

integrals;

integration

Later on, we will study the definite integral of f on [a, b], to be denoted by the

symbol
∫ b

a
f(x) dx .

Both
∫
f(x) dx (the indefinite integral) and

∫ b

a
f(x) dx (the definite integral)

are called integrals.

The process of finding either
∫
f(x) dx or

∫ b

a
f(x) dx is called integration.

EXAMPLE

the constant C is
often called the
‘constant of integration’

Problem: Evaluate
∫

3 dx .

Solution: We are asked to find all the antiderivatives of the function f(x) = 3 .
That is, we are asked to find all functions of x, whose derivative with respect
to x is 3 . The solution is written concisely and correctly as:∫

3 dx = 3x + C

It is conventional that the letters C or K be used in this context to represent
an arbitrary constant (i.e., any real number). This arbitrary constant is also
referred to as the constant of integration.

It is important that you include the constant of integration. If you mistakenly
write ∫

3 dx = 3x ,

then you are claiming that the ONLY function whose derivative is 3 is the
function 3x. Not so! This is only one of an infinite class of functions that has
derivative 3 !

checking your
answers
by differentiating

If
∫
f(x) dx = F (x) + C, then F (x) + C is an antiderivative of f(x), so that:

d

dx

(
F (x) + C

)
= F ′(x) + 0 = f(x)

Thus, answers can always be checked by differentiating.
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Since the derivative of a constant is always zero, it is not necessary to include
‘C’ in the checking process. More simply, check that:

d

dx
F (x) = F ′(x) = f(x)

For example, to check that ∫
3 dx = 3x + C ,

one verifies that:
d

dx
(3x) = 3

practice with notation Observe what happens when the element dx is changed:∫
3 dx = 3x + C∫
3 dy = 3y + C∫
3 dω = 3ω + C

In the first case, d
dx (3x) = 3 .

In the second case, d
dy (3y) = 3 .

In the third case, d
dω (3ω) = 3 .

EXAMPLE Problem: Evaluate
∫

2x dx .

Solution: It is necessary to find any antiderivative of 2x; that is, a function with
derivative 2x. Then, all other antiderivatives will differ by at most a constant.

Observe that F (x) = x2 works, since F ′(x) = 2x.

Once we have a single antiderivative, we actually know them all. That is, any
other function with the same derivative must have precisely the same shape.
So: ∫

2x dx = x2 + C

CAUTION! Be careful not to write something like this:∫
2t dx = t2 + C

Taken literally, this says that

d

dx
t2 = 2t ,

which doesn’t make any sense: if we’re differentiating with respect to x, and
are not told otherwise, then we would have to assume that t is constant with
respect to x. Thus, d

dx t
2 = 0 . The MORAL: make sure the letter x in the

element ‘dx’ agrees with the variable of the function that you’re integrating!
(Unless, of course, you’re doing something unusual.)
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EXERCISE 4 Evaluate the following indefinite integrals. Be sure to write complete sentences.
Don’t forget to include the constant of integration.

♣ 1.
∫

3x2 dx

♣ 2.
∫

2y dy

♣ 3.
∫
et dt

♣ 4.
∫

2e2x dx

♣ 5.
∫

1
x dx Here, just find an antiderivative of 1

x on the interval (0,∞).

EXERCISE 5 For this exercise, assume that x > 0, so that lnx is defined.

Recall that F (x) = lnx has derivative F ′(x) = 1
x . Thus, lnx is an antiderivative

of 1
x , and hence: ∫

1

x
dx = lnx + C (*)

Also, G(x) = ln 2x has derivative G′(x) = 1
2x (2) = 1

x . Thus, ln 2x is an

antiderivative of 1
x , and hence:∫

1

x
dx = ln 2x + K (**)

Equation (*) tells us that every antiderivative of 1
x must be of the form lnx+C

for some constant C.

Equation (**) tells us that every antiderivative of 1
x must be of the form ln 2x+

K for some constant K.

♣ Reconcile these two statements. That is, how can they both be true?

linearity of
differentiation

If f and g are both differentiable functions of x, then

d

dx
(f(x) + g(x)) = f ′(x) + g′(x)

and:
d

dx
k · f(x) = k · f ′(x)

That is, the derivative of a sum is the sum of the derivatives, and constants can
be ‘slid out’ of the differentiation process.

These two properties together are referred to as the linearity of differentiation.
Alternately, one often says ‘differentiation is a linear process’.

We see next that the process of antidifferentiation obeys the same two prop-
erties: the integral of a sum is the sum of the integrals, and constants can be
‘slid out’ of the integral.
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EXERCISE 6 ♣ 1. What is meant by the phrase ‘linearity of differentiation’?

♣ 2. Identify all the places where the linearity of differentiation is used in the
following sentence:

d

dx
(x2 + 3

√
x) =

d

dx
(x2 + 3x1/2)

=
d

dx
x2 +

d

dx
3x1/2

= 2x + 3
d

dx
x1/2

= 2x + 3(
1

2
x−1/2)

= 2x +
3

2
√
x

linearity of
integration

Integration is a linear process, as is differentiation.

That is, the integral of a sum is the sum of the integrals:∫
f(x) + g(x) dx =

∫
f(x) dx +

∫
g(x) dx

Also, constants can be slid out of the integration process:∫
k f(x) dx = k

∫
f(x) dx

Together, these two properties are referred to as the linearity of the integral or
the linearity of integration.

partial proof
of the linearity
of integration

The fact that antidifferentiation is a linear process is a direct consequence of
the linearity of differentiation, as the following discussion illustrates.

Problem: Show that:∫ (
f(x) + g(x)

)
dx =

∫
f(x) dx +

∫
g(x) dx (†)

Solution: To begin, let F be an antiderivative of f (so that F ′ = f) and let G
be an antiderivative of g (so that G′ = g).

Then, ∫
f(x) dx = F (x) + C1

and ∫
g(x) dx = G(x) + C2 ,

where C1 and C2 are arbitrary constants.
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Then, the right-hand side of (†) becomes:∫
f(x) dx +

∫
g(x) dx = (F (x) + C1) + (G(x) + C2)

= F (x) + G(x) + (C1 + C2)

= F (x) + G(x) + C (1)

Here, the two arbitrary constants have been lumped together into a single
arbitrary constant.

Next, investigate the left-hand side of (†). What is
∫ (

f(x) + g(x)
)
dx ? We

need a function with derivative f(x)+g(x). But F (x)+G(x) is such a function:

d

dx
(F (x) + G(x)) = F ′(x) + G′(x) = f(x) + g(x)

Thus, the left-hand side of (†) becomes:∫ (
f(x) + g(x)

)
dx = F (x) + G(x) + C (2)

Compare (1) and (2)—they are identical. Thus, it has been shown that∫ (
f(x) + g(x)

)
dx =

∫
f(x) dx +

∫
g(x) dx ,

establishing that the integral of a sum is the sum of the integrals.

EXERCISE 7 ♣ 1. Similar to the preceding argument, prove that:∫
kf(x) dx = k

∫
f(x) dx

That is, constants can be ‘slid out’ of the integral.

♣ 2. Is
∫
x2 dx = x

∫
x dx? That is, can an ‘x’ be slid out of the integral?

Comment.

EXAMPLE

using the
linearity of
integration

The linearity of the integral can be used to solve a wide variety of integration
problems. For example:∫

(2x− 3) dx =

∫
2x dx +

∫
(−3) dx

=

∫
2x dx−

∫
3 dx

= (x2 + C1)− (3x + C2)

= x2 − 3x + (C1 − C2)

= x2 − 3x + C
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All arbitrary constants are always lumped into a single arbitrary constant. The
previous problem is never written out in all the detail shown above. It is more
simply written as: ∫

(2x− 3) dx = x2 − 3x + C

That is: find an antiderivative of 2x, subtract an antiderivative of 3, and add
on an arbitrary constant.

EXERCISE 8 ♣ Supply a reason for each line in this mathematical sentence:∫
(2x− 3) dx =

∫
2x dx +

∫
(−3) dx

=

∫
2x dx−

∫
3 dx

= (x2 + C1)− (3x + C2)

= x2 − 3x + (C1 − C2)

= x2 − 3x + C

EXAMPLE Often, it is necessary to rewrite the integrand before integrating:∫
ex − 1

ex
dx =

∫
ex

ex
− 1

ex
dx

=

∫
1− e−x dx

= x + e−x + C

Check:

d

dx
(x + e−x) = 1− e−x

=
ex

ex
(1− e−x)

=
ex − 1

ex

EXAMPLE As a second example: ∫
2

3x− 7
dx = 2

∫
1

3(x− 7
3 )

dx

=
2

3

∫
1

x− 7
3

dx

=
2

3
ln(x− 7

3
) + C

♣ Do you see where two arbitrary constants were combined in this argument?
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Check:

d

dx

2

3
(ln(x− 7

3
) =

2

3
(

1

x− 7
3

)

=
2

3x− 7

♣ Do you see where the linearity of differentiation was used in this check?

In the next few sections, additional tools are developed to help in the integration
process.

EXERCISE 9 Evaluate the following integrals. Be sure to write complete mathematical sen-
tences. Don’t forget to include the constant of integration.

♣ 1.

∫
(
1

x
+ ex − 1) dx

♣ 2.

∫
3− t

t
dt

♣ 3.

∫
1

x− 2
dx

♣ 4.

∫
1

3x− 5
dx

♣ 5.

∫
(x + 1)2 dx

a preview of
coming attractions

We will soon learn a very surprising fact: if f is a continuous nonnegative
function, and if we can find an antiderivative F of f , then we can use this
antiderivative to find the area trapped between the graph of f and the x-axis
over an interval [a, b] !

All we have to do is this: evaluate the antiderivative F at b to get F (b). Evaluate
F at a, to get F (a). Then:

desired area = F (b)− F (a)

This result is properly discussed in the next chapter. For now, just keep in
mind that the antiderivatives of a function have a very practical use! To close
this section, we look at a simple example of this surprising connection between
antiderivatives and area.
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EXAMPLE

finding area
using an
antiderivative

Problem: Find the area trapped beneath the graph of f(x) = 2x on the interval
[a, b], where 0 < a < b .

Solution: The desired area is a trapezoid, and calculus is certainly not needed,
in this case, to find it:

desired area =
1

2
(altitude)(sum of bases)

=
1

2
(b− a)(2a + 2b)

=
1

2
(b− a)2(a + b)

= (b− a)(b + a)

Now, let’s use calculus to get the same answer. This time, we first find an
antiderivative of f :

F (x) = x2 has derivative F ′(x) = 2x = f(x)

Then:
F (b)− F (a) = b2 − a2 = (b− a)(b + a)

Note that precisely the same result is obtained!

EXERCISE 10 ♣ 1. Graph f(x) = x.

♣ 2. On your graph, show the area trapped beneath the graph of f and the
x-axis on an interval [a, b], where 0 < a < b .

♣ 3. Compute this area, using the formula for the area of a trapezoid.

♣ 4. Next, observe that F (x) = x2

2 is an antiderivative of f , since F ′(x) =
1
2 (2x) = x = f(x). Use calculus to find the area being investigated. Com-
pare your answers.

QUICK QUIZ

sample questions

1. Suppose a function f(x) has derivative 2 everywhere. What does the graph
of f look like?

2. Fill in the Blank: specifying the derivative of a function completely deter-
mines its .

3. Find
∫

2 dt .

4. Name one use for the antiderivatives of a function.

5. What is meant by the phrase, ‘the linearity of differentiation’?

KEYWORDS

for this section

‘Undoing’ differentiation, the derivative of a function completely determines its
shape, antiderivative, arbitrary constant, indefinite integrals, antidifferentia-
tion, integral sign, integrand, integrals, integration, constant of integration, lin-
earity of differentiation, linearity of integration, connection between antideriva-
tives and area.
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END-OF-SECTION
EXERCISES

♣ Classify each entry below as an expression or a sentence.

♣ For any sentence, state whether it is TRUE, FALSE, or CONDITIONAL.

(Feel free to assume that all functions appearing below are infinitely differen-
tiable.)

1. F ′(x)

2. F ′(x) = 2

3.
∫
f(x) dx

4.
∫
f(t) dt

5.
∫
f(x) dx = F (x) + C

6.
∫

2 dx = 2x + C

7.
∫

2 dt = 2t + C

8.
∫

(f(x) + g(x)) dx =
∫
f(x) dx +

∫
g(x) dx

9.
∫
kf(x) dx = k

∫
f(x) dx

10.
∫
f ′(x) dx = f(x) + C

11. (Deriving the formula for the area of a trapezoid) A trapezoid is any
quadilateral with two parallel sides. The distance between the two parallel
sides is called the altitude of the trapezoid. The two parallel sides are called
the bases of the trapezoid.

The area of any trapezoid can be found as the sum of a rectangle and a
triangle, as illustrated below:

♣ Sum the areas of the rectangle and triangle, and conclude that:

area of a trapezoid =
1

2
(altitude)(sum of bases)


