
6.2 Some Basic Antidifferentiation Formulas

every differentiation
formula has a
‘counterpart’
antidifferentiation
formula

Every differentiation formula has a ‘counterpart’ antidifferentiation formula.
For example:

d

dx
(x) = 1 has ‘counterpart’

∫
(1) dx = x+ C

Why? The statement d
dx (x) = 1 tells us that x is an antiderivative of 1 .

That is, x is a function which, when differentiated, yields 1 . Then, all other
antiderivatives must have precisely the same shape; they can differ by at most
a constant.

Similarly:

d

dx
(x2) = 2x has ‘counterpart’

∫
2x dx = x2 + C

In this latter case, it would be more useful to have a formula for
∫
x dx, instead

of
∫

2x dx . Using the linearity of the integral, this is easy to get:

∫
2x dx = x2 + C ⇐⇒ 2

∫
x dx = x2 + C (linearity)

⇐⇒
∫
x dx =

(x2 + C)

2
(divide by 2)

⇐⇒
∫
x dx =

x2

2
+K (rewrite constant)

Since C is an arbitrary constant, so is C
2 . There is no sense in giving an arbitrary

constant a complicated name like C
2 ; so change the name to, say, K.

Thus, we have learned that: ∫
x dx =

x2

2
+ C

using the formula∫
x dx = x2

2 + C

With the formula ∫
x dx =

x2

2
+ C

in hand, and linearity of the integral, a number of integration problems can be
easily solved.

354
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EXAMPLE Problem: Evaluate
∫

3x dx .

Solution: First, the solution is written in strictly correct, painstaking detail.
Then, it is shown how the solution is commonly abbreviated.∫

3x dx = 3

∫
x dx (linearity)

= 3(
x2

2
+ C) (use formula for integrating x)

=
3x2

2
+ 3C (multiply)

=
3x2

2
+K (rewrite constant)

In practice, one recognizes that the final result will always have an added arbi-
trary constant. So: simply apply the formulas without the arbitrary constant,
and in the final step, remember to include it. This yields the common solution
appearance: ∫

3x dx = 3

∫
x dx = 3(

x2

2
) + C =

3x2

2
+ C

Similarly, one writes ∫
(πt− 4) dt = π

t2

2
− 4t+ C

and: ∫
2− t

7
dt =

1

7
(2t− t2

2
) + C =

4t− t2

14
+ C

EXERCISE 1 ♣ 1. What is the antidifferentiation ‘counterpart’ to the differentiation for-
mula

d

dx
(x3) = 3x2 ?

♣ 2. Use your ‘counterpart’ to obtain a formula for
∫
x2 dx .

♣ 3. Use your formula for integrating x2 to evaluate
∫

5x2 dx .

The next integration formula derives from the Simple Power Rule for Differen-
tiation:

d

dx
xn = nxn−1

It is thus appropriately named the ‘Simple Power Rule for Integration’.

Simple Power Rule
for Integration

Let n be any number except −1. Then:∫
xn dx =

xn+1

n+ 1
+ C

This formula is referred to as the Simple Power Rule for Integration.
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To verify this result, one need only check that:

d

dx

( xn+1

n+ 1

)
=

1

n+ 1

d

dx
(xn+1) =

1

n+ 1
(n+ 1)x(n+1)−1 = xn

Together with algebraic manipulation and linearity of the integral, this formula
allows us to solve a wide variety of antidifferentiation problems, as the following
examples illustrate.

EXAMPLE Problem: Evaluate
∫
x−3 dx .

Solution: ∫
x−3 dx =

x−3+1

−3 + 1
+ C =

x−2

−2
+ C = − 1

2x2
+ C

Check: d
dx

(
− 1

2x2

)
= d

dx (− 1
2x
−2) = − 1

2 (−2)x−3 = x−3

EXAMPLE Sometimes it is necessary to rewrite the integrand before integrating:

Problem: Evaluate
∫

1
x2 dx .

Solution: ∫
1

x2
dx =

∫
x−2 dx =

x−1

−1
+ C = − 1

x
+ C

Check: d
dx (− 1

x ) = d
dx (−x−1) = −(−1)x−1−1 = x−2 = 1

x2

Here, it was necessary to get the integrand into a form that could be handled
by the Simple Power Rule for Integration.

EXAMPLE Problem: Evaluate
∫
t(t2 + 1) dt .

Solution: ∫
t(t2 + 1) dt =

∫
(t3 + t) dt =

t4

4
+
t2

2
+ C

Check!

♣ Where was linearity of the integral used here?

EXAMPLE Problem: Evaluate
∫

(
4
√
x3 + 1) dx .

Solution:∫
(

4
√
x3 + 1) dx =

∫
(x3/4 + 1) dx (rewrite)

=
x

3
4+1

3
4 + 1

+ x+ C (use formulas and linearity)

=
4

7
x7/4 + x+ C (

3

4
+ 1 =

3

4
+

4

4
=

7

4
)

=
4

7
(x7)

1
4 + x+ C ((xa)b = xab)

=
4

7

4
√
x7 + x+ C

It’s a good rule of thumb to get your final answer in a form that matches, as
closely as possible, the original form of the problem. Since the original problem
was given in radical form (not fractional exponent form), the final answer was
also given in radical form.
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EXAMPLE Problem: Evaluate
∫

x2+1
x2 dx .

Solution: ∫
x2 + 1

x2
dx =

∫
1 +

1

x2
dx

=

∫
1 + x−2 dx

= x+
x−1

−1
+ C

= x− 1

x
+ C

=
x2 − 1

x
+ C

EXAMPLE Problem: Evaluate
∫

(3y2 − 1)2 dy .

Solution: ∫
(3y2 − 1)2 dy =

∫
(9y4 − 6y2 + 1) dy

= 9(
y5

5
)− 6(

y3

3
) + y + C

=
9

5
y5 − 2y3 + y + C

EXERCISE 2 Evaluate the following integrals. Be sure to write complete mathematical sen-
tences. Don’t forget to include the arbitrary constant. Check your answers.

♣ 1.

∫
(ax2 + bx+ c) dx, where a, b and c are constants

♣ 2.

∫
2
√
t− 1

t2
dt

♣ 3.

∫
(1 + 3

√
x)2 dx

♣ 4.

∫ √
3π

y4
− ey dy

♣ 5.

∫ (√
x− 1

x

)2

dx
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finding a particular
solution

An integration problem like∫
2(x− 1) dx = 2(

x2

2
− x) + C = x2 − 2x+ C

yields a whole class of functions, each of which has derivative 2(x − 1). Some
members of this class are shown below:

Occasionally, it is desired to go into this class, and choose a particular member;
one that passes through a specified point. For example, if we want a function
f satisfying the two properties

• f ′(x) = 2(x− 1), and

• (3, 2) lies on the graph of f

then we must find the constant C corresponding to the function shown below:

When will the function f(x) = x2 − 2x + C pass through the point (3, 2)?
Precisely when f(3) = 2 :

f(3) = 2 ⇐⇒ 32 − 2(3) + C = 2

⇐⇒ 3 + C = 2

⇐⇒ C = −1

Thus, the desired function is f(x) = x2 − 2x − 1. Problems such as this are
called ‘Finding a particular solution’.
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EXAMPLE Problem: Find a function y satisfying:

• dy
dx = x2 + 2, and

• the point (1, 5) lies on the graph of y

First, find all functions y with derivative x2 + 2 :

y =

∫
(x2 + 2) dx =

x3

3
+ 2x+ C

Since the desired curve is to contain the point (1, 5), C must be chosen to satisfy
the property that y = 5 when x = 1 :

(1, 5) on curve ⇐⇒ 5 =
13

3
+ 2(1) + C

⇐⇒ C = 3− 1

3
=

8

3

Thus, y = x3

3 + 2x+ 8
3 is the desired curve.

EXERCISE 3

finding
particular
solutions

♣ 1. Find a function y with derivative 2x− 3, that passes through the point
(0, 4) .

♣ 2. Find a function f satisfying the following properties:

a) f ′(x) =
√
x, and

b) f(1) = −2

EXERCISE 4 ♣ 1. Find a function f satisfying all the following properties:

a) f ′(x) = 2 for x > 1

b) f ′(x) = 3x2 for x < 1

c) f(1) = 0

d) f is continuous at x = 1

♣ 2. Find another function f satisfying all the properties above except the
last: this time, f should have a nonremovable discontinuity at x = 1 .

integrating ekx The antidifferentiation ‘counterpart’ of the differentiation formula d
dx (ekx) =

kekx is: ∫
kekx dx = ekx +K ⇐⇒

∫
ekx dx =

1

k
ekx + C

Summarizing:

integrating ekx ∫
ekx dx =

1

k
ekx + C

EXAMPLE Problem: Evaluate
∫
e3x dx .

Solution: ∫
e3x dx =

1

3
e3x + C
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EXAMPLE Problem: Evaluate
∫
e2t−1 dt .

Solution: ∫
e2t−1 dt =

∫
e2te−1 dt

= e−1
∫
e2t dt

= e−1(
1

2
e2t) + C

=
1

2
e2t−1 + C

Check: d
dt (

1
2e

2t−1) = 1
2 (e2t−1)(2) = e2t−1

integrating x−1 = 1
x Note that when n = −1, the Simple Power Rule for Integration does not apply,

because the formula xn+1

n+1 is not defined. Therefore, this rule cannot be used to

tell us how to integrate
∫
x−1 dx =

∫
1
x dx.

However, we do know a function whose derivative is 1
x :

d

dx
lnx =

1

x

Thus: ∫
1

x
dx = lnx+ C

However, there’s something undesirable about this formula. The function 1
x is

defined for all x except 0; however the antiderivatives lnx+C are only defined
for positive x. This problem can be remedied, and is the next topic of discussion.

investigating d
dx ln |x| The function y = ln |x| has the graph shown below. Note that:

ln |x| =
{

lnx for x > 0

ln(−x) for x < 0

The domain of ln |x| is precisely the same as the domain of 1
x : all nonzero x.

Now, is ln |x| an antiderivative of 1
x? That is, does d

dx ln |x| = 1
x for all x 6= 0?

It is shown next that the answer is ‘Yes’ !
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Each ‘piece’ of the function is differentiated separately.

For x > 0 : d
dx lnx = 1

x

For x < 0 : d
dx ln(−x) = 1

−x (−1) = 1
x

In either case the same formula is obtained, so that for all x 6= 0 :

d

dx
ln |x| = 1

x

The antiderivative ln |x| should always be used when integrating 1
x .

integrating 1
x ∫

1

x
dx = ln |x|+ C

EXAMPLE Problem: Find all the antiderivatives of 1
3x .

Solution: ∫
1

3x
dx =

1

3

∫
1

x
dx

=
1

3
ln |x|+ C

EXERCISE 5 Find all the antiderivatives of the following functions. Be sure to write your
answers using complete mathematical sentences.

♣ 1. f(x) = 1−
√
x

x

♣ 2. y =
(
t+1
t

)2
♣ 3. g(x) = 1

7x + e−x + 1

QUICK QUIZ

sample questions

1. What is the antidifferentiation ‘counterpart’ to the differentiation formula
d
dxe

kx = kekx ?

2. Find:
∫ √

x dx

3. Find:
∫

1
2t dt

4. Find a function f satisfying: f ′(x) = x and f(0) = 3

KEYWORDS

for this section

Differentiation ‘counterparts’, Simple Power Rule for Integration, finding par-
ticular solutions, integrating ekx, integrating 1

x .

END-OF-SECTION
EXERCISES

♣ Write three antidifferentiation problems, that can be solved with the tools
available to you.

The first problem should involve a radical; the second a binomial squared, and
the third a rational function.

Solve the three antidifferentiation problems, and then check, by differentiating.


