
6.4 The Substitution Technique for Integration

a recurrent theme
in mathematics;
transforming a difficult
problem into an
easier one

A recurrent theme in mathematics is that of transforming a problem that is
difficult to solve into one that is easier to solve.

This idea has already been used extensively: in the process of solving an equa-
tion, one transforms the original equation into an equivalent one (that is, one
with the same solution set) that is easier to work with.

In this section, a method is studied by which it is often possible to transform
a difficult integration problem into one that is much easier. The transformed
problem is then solved, and the solution used to obtain the solution of the
original problem. The technique is referred to as substitution.

EXAMPLE

the substitution
technique
for integration

Here’s an example that illustrates the technique. Suppose one wants to find:∫
(3− 4x2)100(−8x) dx

Theoretically at least, this problem is solvable with the tools currently available:
one need ‘only’ multiply out (3 − 4x2)100, multiply this by −8x, and then
integrate the resulting polynomial term-by-term. Practically speaking,

there must be a better way,

and there is.

376
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do some renaming Let’s do some ‘renaming’. Define a new variable u by u := 3 − 4x2, and
differentiate to see that du

dx = −8x. There just happens to be a −8x in the
integrand. So, the integral can be rewritten in terms of u:

∫
(

u︷ ︸︸ ︷
3− 4x2)100

du
dx︷ ︸︸ ︷

(−8x) dx =

∫
u100

du

dx
dx

Motivated by ‘ cancelling the dx’s ’, one might conjecture that an equivalent
problem is ∫

u100 du ,

which is a problem that can be solved easily:
∫
u100 du = u101

101 + C

♣ What is a ‘conjecture’?

Indeed, u101

101 + C is the solution of
∫
u100 dudx dx, since by the extended power

rule for differentiation:

d

dx

u101

101
=

1

101
(101u101−1)

du

dx
= u100

du

dx

(Remember that u is a function of x, and differentiate accordingly.) Next,

transform the solution u101

101 +C back to the variable x . Since u = 3− 4x2, the
solution to the original problem is:∫

(3− 4x2)100(−8x) dx =
(3− 4x2)101

101
+ C

EXERCISE 1 ♣ Check, by differentiating, that:∫
(3− 4x2)100(−8x) dx =

(3− 4x2)101

101
+ C

simplified notation
for the
previous problem

Henceforward, here’s how the previous problem will be written down:

∫
(

u︷ ︸︸ ︷
3− 4x2)100

du︷ ︸︸ ︷
(−8x) dx =

∫
u100 du

=
u101

101
+ C

=
(3− 4x2)101

101
+ C
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Observe several important features of this solution:

• Write the substitution (u = 3 − 4x2, in this case) directly under the inte-
gration problem.

• When u is a function of x, du is found by first differentiating u with respect
to x

du

dx
= −8x

and then ‘multiplying’ both sides by dx to obtain du. The justification for
this procedure was motivated by the first example.

Usually, one doesn’t bother to write down the intermediate step du
dx = −8x.

• Line up the equal signs as you are solving the problem. This form makes
it easy to see the original integration problem and the solution at a glance.

• Once the solution in terms of the new variable u is obtained, rewrite this
solution in terms of the original variable, x.

EXERCISE 2 ♣ Supply a reason for each step:

∫
(

u︷ ︸︸ ︷
3− 4x2)100

du︷ ︸︸ ︷
(−8x) dx =

∫
u100 du

=
u101

101
+ C

=
(3− 4x2)101

101
+ C

Don’t mix
variables!

Don’t ever ‘mix’ variables when writing down your solution, like in:

∫
(3− 4x2)100x dx =

∫ BAD!︷ ︸︸ ︷
u100x︸ ︷︷ ︸

u and x mixed

dx = · · ·

Get everything ready to change to the new variable, and then do it—all at once.

choosing a
‘u that works’

Strategy: choose
something for u
such that du

dx
also appears
in the integrand

Not all problems are solvable by substitution, but many are. If you are faced
with a difficult integration problem, the technique of substitution should always
be tried. The challenge is, of course, to find a choice for u that ‘works’. Here’s
the general strategy:

• Choose something for u so that its derivative du
dx appears as a factor in the

integrand (possibly off by a constant).

Often, as examples will illustrate, u is something that is raised to a power, or
under a radical.

In the previous example, u was chosen to be 3−4x2 because it was noted that the
derivative, −8x, was also a factor in the integrand. Actually, it is only critical
that the variable part of the derivative appear in the integrand; linearity of the
integral can be used to take care of constants, as the next example illustrates.
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EXAMPLE

introducing a
constant;
multiply by 1 in
an appropriate form

Problem: Evaluate
∫

(3− 4x2)100 x dx .

Solution: Note the similarity to the previous example. The only difference is
that this time the ‘−8’ is missing.

The substitution u = 3 − 4x2 is still a good choice, since d
dx (3 − 4x2) = −8x,

and the variable part of this derivative, x, appears as a factor in the integrand.

To transform the problem into an integral in u, it is necessary to bring a −8
into the picture, without changing the problem. This can be accomplished by
the usual technique of multiplying by 1 in an appropriate form:∫

(3− 4x2)100x dx =

∫
(3− 4x2)100

(−8

−8

)
x dx (multiply by 1 in form

−8

−8
)

=
1

−8

∫
(

u︷ ︸︸ ︷
3− 4x2)100

du︷ ︸︸ ︷
(−8x) dx (linearity of integral)

= −1

8

∫
u100 du (transform to u)

= −1

8
· u

101

101
+ C (solve problem in u)

= −1

8
· (3− 4x2)101

101
+ C (rewrite in x)

Since constants can be ‘slid out’ of the integral, we were able to ‘get rid of’ the
undesired ‘ 1

−8 ’ in the integrand. Only the −8 was left in the integrand, since
this was needed as part of du.

EXERCISE 3 ♣ 1. Check, by differentiating, that:∫
(3− 4x2)100x dx = −1

8
· (3− 4x2)101

101
+ C

♣ 2. Where and how was the linearity of the integral used in arriving at this
solution?

The technique of substitution is further illustrated with a number of examples.
Pay particular attention to the complete mathematical sentences in each of these
examples.

EXAMPLE

evaluate an integral

Problem: Evaluate
∫

(t+ 10)7 dt .

Solution:

∫
(

u︷ ︸︸ ︷
t+ 10)7

du︷︸︸︷
dt =

∫
u7 du

=
u8

8
+ C

=
(t+ 10)8

8
+ C

Check:
d

dt

(t+ 10)8

8
=

1

8
· 8(t+ 10)7(1) = (t+ 10)7
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EXAMPLE

find all the
antiderivatives
of a function

Problem: Find all the antiderivatives of
x2√
x3 − 1

.

Solution: ∫
x2√
x3 − 1

dx =
1

3

∫
3x2√
x3 − 1

dx

=
1

3

∫
1√
u
du

=
1

3

∫
u−1/2 du

=
1

3
· u

1/2

1/2
+ C

=
2

3

√
x3 − 1 + C

EXERCISE 4 ♣ 1. Why was u chosen to be x3 − 1 in the previous example?

♣ 2. Supply reasons for each step in the previous example. In particular,
make sure you identify where the linearity of the integral was used.

♣ 3. Check the previous solution, by differentiating.

EXAMPLE

integrate

Problem: Integrate:

∫
y + 1

(y2 + 2y + 1)3
dy

Solution: ∫
y + 1

(y2 + 2y + 1)3
dy =

∫
( 1
2 )(2)(y + 1)

(y2 + 2y + 1)3
dy

=
1

2

∫
2y + 2

(y2 + 2y + 1)3
dy

=
1

2

∫
1

u3
du

=
1

2

∫
u−3 du

=
1

2
· u
−2

−2
+ C

= − 1

4u2
+ C

= − 1

4(y2 + 2y + 1)2
+ C

EXERCISE 5 ♣ 1. Why was u chosen to be y2 + 2y + 1 in the previous example?

♣ 2. Rewrite the previous example, using the dummy variable x instead of
the dummy variable y. Do not look at the text while you are solving the
problem.

♣ 3. Check the solution to the previous example, by differentiating.
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EXAMPLE

two different
approaches to
the same problem

Problem: Find
∫
e4+x dx in two different ways.

Old way: New way:∫
e4+x dx =

∫
e4ex dx

∫
e4+x dx =

∫
eu du

= e4
∫
ex dx = eu + C

= e4 · ex + C = e4+x + C

= e4+x + C

Which was easier?

EXAMPLE∫
ekx dx = 1

ke
kx + C

Problem: Find a formula for integrating ekx, for any nonzero constant k.

Solution: ∫
ekx dx =

1

k

∫
k · ekx dx

=
1

k

∫
eu du

=
1

k
eu + C

=
1

k
ekx + C

This is a nice formula to remember. Thus, for example:∫
7e3x dx = 7(

1

3
)e3x + C =

7

3
e3x + C

EXAMPLE Some people take a slightly different approach when solving problems like∫
e4+x dx and

∫
e3x dx, as illustrated below:

∫
e4+x dx =

∫
du

∫
e3x dx =

1

3

∫
3e3x dx

= u+ C =
1

3

∫
du

= e4+x + C =
1

3
u+ C

=
1

3
e3x + C

Variety is the spice of life. Which way do you prefer?

EXAMPLE

finding a
particular solution

Problem: Find a function f satisfying the following two conditions:

• the graph of f passes through the point (0, 1)

• f ′(x) =
1

3x+ 5
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Solution: First, find ALL functions f that have derivative 1
3x+5 . That is, find

all the antiderivatives of f ′:

f(x) =

∫
f ′(x) dx

=

∫
1

3x+ 5
dx

=
1

3

∫
3

3x+ 5
dx

=
1

3

∫
1

u
du

=
1

3
ln |u|+ C

=
1

3
ln |3x+ 5|+ C

A problem like this was integrated earlier in the chapter, via a different tech-
nique. (See, for example, page 350.) Which technique do you prefer?

Check: Remember:
d

dx
ln |x| = 1

x

An application of the Chain Rule gives:

d

dx
ln |f(x)| = 1

f(x)
· f ′(x)

Then:
d

dx
(
1

3
ln |3x+ 5|) =

1

3
· 1

3x+ 5
· 3 =

1

3x+ 5

Second, choose the antiderivative that passes through the desired point:

(0, 1) lies on graph of f(x) =
1

3
ln |3x+ 5|+ C ⇐⇒ f(0) = 1

⇐⇒ 1

3
ln 5 + C = 1

⇐⇒ C = 1− ln 5

3

⇐⇒ C =
3− ln 5

3

Note how this was written down using a complete mathematical sentence.

The desired function is therefore:

f(x) =
1

3
ln |3x+ 5|+ 3− ln 5

3

=
ln |3x+ 5|+ 3− ln 5

3
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EXERCISE 6 ♣ 1. Use the Chain Rule to prove that:

d

dx
ln |f(x)| = 1

f(x)
· f ′(x)

♣ 2. Verify that the function

f(x) =
ln |3x+ 5|+ 3− ln 5

3

has a graph that passes through the point (0, 1), and has derivative f ′(x) =
1

3x+5 .

EXAMPLE

antidifferentiate

Problem: Antidifferentiate
lnx

x
.

Solution: ∫
lnx

x
dx =

∫
u du

=
u2

2
+ C

=
1

2
(lnx)2 + C

Check:
d

dx
(
1

2
(lnx)2) =

1

2
· 2(lnx)(

1

x
) =

lnx

x

EXAMPLE

using a letter
different than ‘u’
for the substitution
variable

Problem: Evaluate
∫

(2− u)4 du .

Solution: Just use a letter different than ‘u’ for the substitution variable! Here,
the letter ‘w’ is used. ∫

(2− u)4 du = −
∫

(2− u)4(−du)

= −
∫
w4 dw

= −w
5

5
+ C

= −1

5
(2− u)5 + C

QUICK QUIZ

sample questions

1. What is the idea behind the substitution technique for integration?

2. Solve
∫

1
2x−1 dx two ways; without using substitution, and using substitu-

tion. Do your answers agree?

3. Where is linearity of the integral used in the substitution technique?

4. Solve:
∫
e3x dx

5. Is
∫

(3x+ π)5 dx = (3x+π)6

18 + C ? Justify your answer.

KEYWORDS

for this section

Transforming a difficult problem into an easier one, the substitution technique
for integration, choosing a ‘u that works’, multiplying by 1 in an appropriate
form.
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END-OF-SECTION
EXERCISES

♣ Evaluate the following indefinite integrals. Be sure to write complete math-
ematical sentences. Check your answers by differentiating.

1.

∫
(2x− 1)17 dx

2.

∫
5t
√
t2 + 3 dt

3.

∫
3 ln 4x

x
dx

4.

∫
(4e2t + e1+t) dt

5.

∫
e
√
x

√
x
dx

6.

∫
−1

2u+ 5
du

7.

∫
4t+ 2√

(t2 + t+ 1)3
dt

8.

∫
(ex + 1)5 · 3ex dx

9. Find a function f whose graph passes through the point (0, 4), and that
has derivative f ′(x) = ex(ex + 1)3.

10. A particle traveling along a line has velocity function given by:

v(t) = (t− 2)3

It is known that at t = 1, the particle is at position 1
2 . Find the distance

function for this particle.

11. A student passed in the following solution to an integration problem:∫
(x2 + 1)5 dx =

∫
2x

2x
(x2 + 1)5 dx

=
1

2x

∫
(x2 + 1)5(2x dx)

=
1

2x

∫
u5 du

=
1

2x

u6

6
+ C

=
1

2x

(x2 + 1)6

6
+ C

=
(x2 + 1)6

12x
+ C

♣ a) Do you believe that this is a correct solution? If not, where has the
student made a mistake?

♣ b) Check the student’s solution by finding d
dx

(x2+1)6

12x . (Use the quotient
rule.) Is the student’s solution correct?


