6.5 More on Substitution

integration is
more difficult
than differentiation
more advanced substitution techniques
a slight twist on the 'basic model' of substitution

EXAMPLE

'role reversal' Note that the substitution $u=x+1$ in the previous example transformed

$$
\int x(x+1)^{10} d x \quad \text { to } \quad \int(u-1) u^{10} d u
$$

in the first integral, the sum is raised to the tenth power, and in the second integral, the singleton is raised to the tenth power. Hence, the substitution provided a sort of 'role reversal'. The next few examples illustrate the use of substitution for this type of 'role reversal'.
alternate solution; long division

Problem: Find $\int \frac{x}{x+1} d x$.
Solution: The problem is of the form $\int \frac{\operatorname{singleton}}{\text { sum }} d x$. If the problem were instead of the form $\int \frac{\text { sum }}{\text { singleton }} d x$, then it would be easy, since, for example, $\frac{x+1}{x}=1+\frac{1}{x}$. Thus, the denominator is 'transformed to a singleton' by defining $u:=x+1$:

$$
\begin{aligned}
\int \frac{x}{x+1} d x & =\int \frac{u-1}{u} d u \\
\mu=\mathbf{x}+\mathbf{1} ; \boldsymbol{x}=\boldsymbol{\mu}-\mathbf{1} & =\int\left(1-\frac{1}{u}\right) d u \\
d u=d \mathbf{x} & =u-\ln |u|+C \\
& =(1+x)-\ln |1+x|+C \\
& =x-\ln |1+x|+K
\end{aligned}
$$

In the last step, the constant 1 was absorbed into the constant of integration, to obtain a simpler answer.

Check: $\frac{d}{d x}(x-\ln |1+x|)=1-\frac{1}{1+x}=\frac{1+x-1}{1+x}=\frac{x}{1+x}$

Here's an alternate solution to the integration problem $\int \frac{x}{1+x} d x$.
Alternate Solution: First, do a long division. Remember that when you divide by a polynomial, you want to write the divisor so that the powers of x decrease as you go from left to right:

Thus, $\frac{x}{x+1}=1-\frac{1}{x+1}$. Then:

$$
\begin{aligned}
\int \frac{x}{x+1} d x & =\int\left(1-\frac{1}{x+1}\right) d x \\
& =x-\ln |x+1|+C
\end{aligned}
$$

\& Find $\int \frac{3 t}{t-1} d t$ in two ways. First, use the 'role reversal' substitution technique. Second, use long division.

EXAMPLE

$\mu=2 t+1$;

$$
\begin{aligned}
\int \frac{3 t}{2 t+1} d t & =3 \int \frac{t}{2 t+1} d t \\
& =3 \int \frac{\frac{u-1}{2}}{u} \frac{d u}{2}
\end{aligned}
$$

$$
t+\frac{a n}{2}
$$

$$
=\frac{3}{4} \int \frac{u-1}{u} d u
$$

$$
=\frac{3}{4} \int 1-\frac{1}{u} d u
$$

$d u=2 d t$;

$$
=\frac{3}{4}(u-\ln |u|)+C
$$

$$
d t=\frac{d u}{2}
$$

$$
=\frac{3}{4}(2 t+1-\ln |2 t+1|)+C
$$

$$
=\frac{3}{4}(2 t-\ln |2 t+1|)+K
$$

The technique worked, because it was possible to rewrite the integrand entirely in terms of u, AND the resulting function of u was easier to integrate than the initial function of x.
\& What was done in the last step of the previous integration?

EXERCISE 2

* Evaluate $\int \frac{2 t}{3 t-1} d t$ in two ways. First, use the 'role reversal' substitution technique. Second, use long division.

EXAMPLE

Problem: Find $\int \frac{3 x}{(2 x-1)^{5}} d x$.
Solution:

$$
\begin{aligned}
\int \frac{3 x}{(2 x-1)^{5}} d x & =3 \int \frac{(u+1) / 2}{u^{5}} \frac{d u}{2} \\
\boldsymbol{\mu}=2 \boldsymbol{2} ; & =\frac{3}{4} \int \frac{u+1}{u^{5}} d u \\
\boldsymbol{x}=\frac{\mu+1}{2} & =\frac{3}{4} \int\left(u^{-4}+u^{-5}\right) d u \\
d \boldsymbol{d}=2 \mathbf{d x} & =\frac{3}{4}\left(\frac{u^{-3}}{-3}+\frac{u^{-4}}{-4}\right)+C \\
d x &
\end{aligned}
$$

Problem: Find $\int \frac{x}{2 \sqrt{3 x-1}} d x$.
Solution:

$$
\begin{aligned}
\int \frac{x}{2 \sqrt{3 x-1}} d x & =\frac{1}{2} \int \frac{u+1}{3} \cdot \frac{1}{\sqrt{u}} \frac{d u}{3} \\
& =\frac{1}{18} \int \frac{u+1}{u^{1 / 2}} d u \\
& =\frac{1}{18} \int\left(u^{1 / 2}+u^{-1 / 2}\right) d u \\
& =\frac{1}{18}\left(\frac{2}{3} u^{3 / 2}+2 u^{1 / 2}\right)+C \\
& =\frac{1}{18}\left(\frac{2}{3}(3 x-1)^{3 / 2}+2(3 x-1)^{1 / 2}\right)+C \\
& =\frac{1}{27} \sqrt{(3 x-1)^{3}}+\frac{1}{9} \sqrt{3 x-1}+C
\end{aligned}
$$

EXERCISE 3
 Solve the following integration problems. Use any appropriate techniques.

\& 1. $\int t(t+1)^{7} d t$
\& 2. $\int \frac{5 x}{\sqrt{(3-2 x)^{3}}} d x$
\& 3. $\int u \sqrt{u^{2}+1} d u$
rationalizing substitutions

EXAMPLE
a rationalizing substitution

Remember that to 'rationalize' means to 'get rid of the radical'. Sometimes, an appropriate substitution can be used to get rid of a radical, and transform a difficult problem into a more manageable one. The technique is illustrated in the next example.

Problem: Find $\int \frac{1}{1+\sqrt{x}} d x$.
Solution: To rationalize the integrand, let $u=\sqrt{x}$, so that $u^{2}=x$. Remember that u is a function of x, and differentiate both sides of $u^{2}=x$ with respect to x, getting:

$$
2 u \frac{d u}{d x}=1
$$

Thus,

$$
2 u d u=d x
$$

Now, transforming to an integral in u yields:

$\mu=\sqrt{x} ;$
 $\mu^{2}=x$

$$
\begin{aligned}
\int \frac{1}{1+\sqrt{x}} d x & =\int \frac{1}{1+u}(2 u d u) \\
& =2 \int \frac{u}{1+u} d u
\end{aligned}
$$

$$
2 \mu \frac{d \mu}{d x}=1 ;
$$

$2 u d u=d x$

At this point, the previous reversal of roles procedure can be used:

$$
\begin{aligned}
2 \int \frac{u}{1+u} d u & =2 \int \frac{w-1}{w} d w \\
\boldsymbol{N}=\mathbf{I}+\boldsymbol{u} ; & =2 \int 1-\frac{1}{w} d w \\
\boldsymbol{\mu}=\boldsymbol{\omega}-\mathbf{1} & =2(w-\ln |w|)+C \\
\boldsymbol{d} \boldsymbol{\omega}=\mathbf{d} \boldsymbol{u} & \\
& =2((1+u)-\ln |1+u|)+C \\
& =2 \sqrt{x}-2 \ln |1+u|+K \\
&
\end{aligned}
$$

Remember that since we started with an integration problem involving x, it was necessary to end up with the antiderivatives in terms of x.

EXERCISE 4
\& 1. Re-do the previous problem, without looking at the text.
\& 2. Check that: $\frac{d}{d x}(2 \sqrt{x}-2 \ln |1+\sqrt{x}|)=\frac{1}{1+\sqrt{x}}$

EXERCISE 5

tables of integrals

Solve the integral $\int \frac{x}{\sqrt{x-1}} d x$ in two ways. First, let $u=x-1$ and make a 'role reversal'. Second, let $u=\sqrt{x-1}$, so that $u^{2}=x-1$, and make a rationalizing substitution. Compare your answers. Which way do you think was easier?

In closing, it must be remarked that there are extensive tables of integrals available. One such compilation is:

Tables of Integrals and other Mathematical Data
Herbert Bristol Dwight, third edition
The MacMillan Company, New York, 1957
(This was my Dad's, so it is very special to me! There are obviously newer books available.)

To use such tables, one identifies the form of the integrand, finds a corresponding form in the table, and applies the formula.
For example, suppose one must integrate:

$$
\int \frac{1}{x\left(1+3 x^{7}\right)} d x
$$

One finds the following entry in a table of integrals:

$$
\int \frac{d x}{x\left(a+b x^{m}\right)}=\frac{1}{a m} \log \left|\frac{x^{m}}{a+b x^{m}}\right|
$$

Letting $a=1, b=3$, and $m=7$, one applies the formula, getting:

$$
\int \frac{1}{x\left(1+3 x^{7}\right)} d x=\frac{1}{7} \log \left|\frac{x^{7}}{1+3 x^{7}}\right|
$$

\& Check!

QUICK QUIZ
sample questions

1. Which is harder, in general, differentiation or integration?
2. Find all the antiderivatives of $\frac{x}{2+x}$. Use any appropriate technique.
3. What tools are available to help with integration?

KEYWORDS Reversal of roles substitution technique, a rationalizing substitution, tables of for this section integrals.

END-OF-SECTION EXERCISES
\& The purpose of these exercises is to provide you with additional practice using all the antidifferentiation techniques discussed thus far in this chapter. Be sure to write complete mathematical sentences.

1. $\int \frac{e^{2 x}+1}{5} d x$
2. $\int x e^{\left(3 x^{2}-1\right)} d x$
3. $\int \frac{t}{\sqrt[3]{4 t^{2}-1}} d t$
4. $\int \frac{x}{2 x-1} d x$
5. $\int x(x+1)^{3}(x-1)^{3} d x$
6. $\int \frac{2 t-1}{t} d t$
7. $\int \frac{(\ln x)^{3}}{3 x} d x$
