
6.6 Integration by Parts Formula

Introduction An attentive reader may have noticed that we have not yet learned how to
integrate lnx. Indeed, the integral

∫
lnx dx is a classic example of an integral

that requires the integration by parts formula, which is the topic of this section.
First, a derivation.

derivation of the
Integration By Parts
formula

The integration by parts formula is an easy consequence of the product rule for
differentiation. Suppose that u and v are differentiable functions of x. Then,
the product uv is also differentiable, and:

d

dx
(uv) = u

dv

dx
+ v

du

dx

Integrating both sides with respect to x (and using the linearity of the integral)
yields: ∫

d

dx
(uv) dx =

∫
u
dv

dx
dx +

∫
v
du

dx
dx

the remaining integrals
absorb the
constant of integration

Look at the left-hand side of this equation, and answer the following (trick)
question: do we know a function whose derivative with respect to x is d

dx (uv)?

Of course! The function uv has derivative d
dx (uv)! So we can replace the left-

hand side by uv + C to obtain:

uv + C =

∫
u
dv

dx
dx +

∫
v
du

dx
dx

This equation can be simplified considerably. First, observe that the indefinite
integrals remaining on the right-hand side will generate their own constant of
integration, so it is not necessary to include the constant C on the left-hand
side.

Furthermore, the integrals
∫
u dv
dx dx and

∫
v du
dx dx can be replaced by the simpler

notation
∫
u dv and

∫
v du. Thus, we have:

uv =

∫
u dv +

∫
v du

The final result is rearranged slightly, by solving for
∫
u dv :

Integration by Parts
formula

∫
u dv = uv −

∫
v du

This formula is commonly referred to more simply as the ‘parts formula’.

EXERCISE 1 ♣ Derive the integration by parts formula, without looking at the text.
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using the
Integration by Parts
formula;

hopefully,
the new integral
is easier

The idea in using the integration by parts formula is a familiar one: take a
difficult integration problem, and try to transform it into an easier problem.
When using the integration by parts formula, one takes an integral of the form∫
u dv and rewrites it in the form uv −

∫
v du . The hope is that the ‘new’

integral
∫
v du is easier than the original integral

∫
u dv .

The general scheme is outlined below, and then illustrated in the example that
follows.

a general procedure
for using the
parts formula

• Suppose that
∫
f(x) dx cannot be solved by either elementary formulas, or

substitution. It is decided to try integration by parts.

• You must choose u and dv to rewrite the integral in the form
∫
u dv. There

will often be several possible choices for u and dv; this is the part of the
problem that requires some expertise.

A general strategy for choosing a u and dv that ‘work’ is presented after
the example.

• From u, obtain du by differentiation.

• From dv, obtain v by integration. Any antiderivative can be used—usually
(but not always), the constant of integration C is chosen to be zero, to
obtain the simplest antiderivative.

• At this point, all the ingredients are at hand to rewrite the integral using
the parts formula: ∫

u dv = uv −
∫

v du

Look at the new integral
∫
v du . The hope is that this new integral

∫
v du

is easier to handle than the original integral
∫
u dv .

EXAMPLE

a classic;

integrating
∫

lnx dx

Problem: Find
∫

lnx dx .

Solution: No previous technique seems to work here, so we are motivated to
try the integration by parts formula. First, u and dv must be chosen to rewrite∫

lnx dx in the form
∫
u dv .

The choices u = lnx and dv = dx are made; following the example, the moti-
vation for these choices is discussed.

Then:

∫ u︷︸︸︷
lnx

dv︷︸︸︷
dx = (

u︷︸︸︷
lnx)(

v︷︸︸︷
x )−

∫ v︷︸︸︷
x ·

du︷ ︸︸ ︷
1

x
dx

= x lnx−
∫

1 dx

= x lnx− x + C

Check:
d

dx
(x lnx− x) =

[
x(

1

x
) + (lnx)(1)

]
− 1 = 1 + lnx− 1 = lnx

So, the result is correct.
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a strategy for
choosing u and dv

Here is a general strategy for choosing u and dv :

• The choice for dv must include dx. Also, since dv must be integrated to
obtain v, you must choose something for dv that you know how to inte-
grate. Sometimes, this consideration will completely determine the choice.
(Observe that once dv is chosen, u must be everything that is left.)

• If there are several possible choices for dv, then choose something for u that
gets EASIER when you differentiate it. This is motivated by the fact that
du appears in the new integral: the simpler du is, the better.

In many problems, these two considerations will lead to a correct choice for
u and dv. If not—experience, trial and error, and luck can all be factors in
obtaining a correct choice for u and dv (if one exists).

return to the
previous example;
choosing u and dv

Reconsider the problem of finding
∫

lnx dx. Here’s how we arrived at the choices
for u and dv :

• Choose something for dv that includes dx, and that you know how to in-
tegrate. We can’t choose dv to be lnx dx, since we don’t know how to
integrate this (that’s the problem). So we are forced to choose dv = dx.

• Now, the choice for u is completely determined: u must equal everything
else. Thus, u = lnx .

EXAMPLE

choosing u and dv

Problem: Evaluate
∫
xex dx .

• There are several possible choices for dv here, since there are several ‘pieces’
that we know how to integrate. We could choose:

dv = dx

or dv = x dx

or dv = ex dx

Since this first consideration has not solved the ‘choice’ problem, we move
on to the next consideration.

• Choose something for u that gets simpler when you differentiate it. If we
choose u = ex, then du

dx = ex, which is no simpler. But if we choose u = x,

then du
dx = 1, which is certainly simpler.

• Thus, choose u = x. Then dv must be everything else: dv = ex dx. Here’s
how the problem is written down:∫

x ex dx = (x)(ex)−
∫

ex dx

= x ex − ex + C

EXERCISE 2 ♣ Check that: d
dx (xex − ex) = xex

In the following examples, use the strategy to see how we arrived at the choices
for u and dv.
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EXAMPLE Problem: Evaluate

∫
x

ex
dx .

Solution: ∫
x

ex
dx =

∫
xe−x dx

= −xe−x −
∫

(−e−x) dx

= −xe−x +

∫
e−x dx

= −xe−x − e−x + C

= −e−x(x + 1) + C

EXERCISE 3 ♣ 1. In applying the parts formula to
∫
xe−x dx, list three possible choices

for dv.
♣ 2. Corresponding to each choice for dv, what would u have to be? In which

case is du
dx simpler than u?

EXAMPLE Problem: Evaluate
∫
x2 lnx dx .

Solution: One could choose either dv = dx or dv = x2 dx, since both of these
pieces can be integrated with prior techniques. If dv = dx is chosen, then
u must be x2 lnx, which gets much more complicated when differentiated. If
dv = x2 dx is chosen, then u must be lnx, with the relatively simply derivative
1
x . Thus, it is decided to initially try dv = x2 dx:∫

x2 lnx dx =
x3

3
lnx−

∫
x3

3
(
1

x
) dx

=
x3

3
lnx− 1

3

∫
x2 dx

=
x3

3
lnx− 1

3
· x

3

3
+ C

=
x3 lnx

3
− x3

9
+ C

EXERCISE 4 Use the parts formula to evaluate the following integrals. Use the ‘strategy’ to
decide on your choices for u and dv.

♣ 1.
∫
x lnx dx

♣ 2.
∫
xe3x dx

♣ 3.
∫
x3 lnx dx

♣ 4.
∫

ln 3x dx
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a problem that’s
easier if a
nonzero constant
of integration
is chosen
when finding v

Problem: Evaluate
∫

ln(x + 3) dx .

Solution: We must choose dv = dx and hence u = ln(x+ 3). If the ‘traditional’
approach is taken, where the constant of integration is chosen to be 0 when
going from dv to v, then here’s what happens:∫

ln(x + 3) dx = x ln(x + 3)−
∫

x · 1

x + 3
dx

This is fine, except that to solve the resulting integral
∫

x
x+3 dx , either a ‘role-

reversing’ substitution or long division is required. However, if we’re a bit
clever, this can be avoided:

∫
ln(x + 3) dx = (x + 3) ln(x + 3)−

∫
(x + 3)

1

x + 3
dx

= (x + 3) ln(x + 3)−
∫

(1) dx

= (x + 3) ln(x + 3)− x + C

In obtaining v, we merely need a function whose derivative with respect to x
is 1 (dv = dx ⇐⇒ dv

dx = 1). Usually, we use v = x, because it’s simplest.
Here, however, it was certainly to our advantage to choose a nonzero constant
of integration.

EXERCISE 5 ♣ 1. Check that: d
dx [(x + 3) ln(x + 3)− x] = ln(x + 3)

♣ 2. Find all the antiderivatives of 3 ln(x + 1).

♣ 3. Evaluate
∫

ln(t− 1
2 ) dt .
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EXAMPLE
repeated parts

Problem: Evaluate
∫
x2ex dx .

Solution: ∫
x2ex dx = x2ex −

∫
2xex dx

= x2ex − 2

∫
xex dx

∫
xex dx = xex −

∫
ex dx

= xex − ex + C

Combining results: ∫
x2ex dx = x2ex − 2(xex − ex) + C

= ex(x2 − 2x + 2) + C

Check:

d

dx

(
ex(x2 − 2x + 2)

)
= ex(2x− 2) + ex(x2 − 2x + 2)

= ex(2x− 2 + x2 − 2x + 2)

= x2ex

After the first application of parts, it was noted that the resulting ‘new’ integral∫
xex dx was easier than the one started with: the power of x was knocked down

by one. Thus, we were motivated to repeat the process.

It’s very important to write things down neatly and carefully!

EXERCISE 6 ♣ 1. Re-do the previous example without looking at the text.

♣ 2. Evaluate
∫
x2e3x dx. Be sure to write a complete mathematical sentence.

EXERCISE 7 Evaluate the integral
∫

x
(1+x)6 dx in two ways:

♣ 1. First, use an appropriate ‘role-reversal’ substitution. Differentiate to
verify that you have a correct solution.

♣ 2. Second, use parts with u = x and a corresponding dv. Differentiate to
verify that you have a correct solution.

♣ 3. The answers obtained from the two different approaches probably look
a bit different. However, they must differ by at most a constant. Express
each answer as a fraction with the same denominator, so that you can better
compare them.

The antidifferentiation tools studied in this chapter are summarized next for
your convenience:
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ANTIDIFFERENTIATION TOOLS

F ′(x) = f(x) F is an antiderivative of f∫
f(x) dx all antiderivatives of f∫

f ′(x) dx = f(x) + C all antiderivatives differ by a constant∫ (
f(x) + g(x)

)
dx =

∫
f(x) dx +

∫
g(x) dx the integral of a sum is the sum of the integrals∫

kf(x) dx = k
∫
f(x) dx constants can be ‘slid out’ of the integral∫

xn dx = xn+1

n+1 + C Simple Power Rule for integration, n 6= −1∫
1
x dx = ln |x|+ C integrating 1

x∫
ekx dx = 1

ke
kx + C integrating ekx∫

f ′(u)du
dx dx = f(u) + C, u a function of x substitution technique∫

u dv = uv −
∫
v du integration by parts formula

QUICK QUIZ

sample questions

1. What is the Integration By Parts formula? Where does it come from?

2. Evaluate
∫

ln 2t dt .

3. Evaluate
∫

ln(x− 1) dx .

4. What must you think of when choosing dv for use in the Parts formula?

KEYWORDS

for this section

Integration by Parts formula, derivation of the parts formula, a strategy for
choosing u and dv, choosing a nonzero constant when obtaining v, repeated
parts.

END-OF-SECTION
EXERCISES

The purpose of these exercises is to provide you with additional practice using
all the antidifferentiation techniques discussed thus far in this chapter. Be
sure to write complete mathematical sentences. Properties of exponents and
logarithms may be needed to rewrite the integrand before integrating.

1.

∫
(ex − 1)2 dx

2.

∫
ln(x2 + 2x + 1)

x + 1
dx

3.

∫
ex

1 + ex
dx

4.

∫
ln

1 + x

x
dx

5.

∫ √
et

2
dt

6.

∫
x√

x4 lnx
dx


