7.4 The Substitution Technique applied to Definite Integrals

Introduction

Consider the definite integral:

$$\int_0^1 x\sqrt{1-x^2}\,dx$$

To find an antiderivative of $x\sqrt{1-x^2}$ requires a substitution; when this substitution is performed in the context of the definite integral, one must be careful how things are written down.

There are two basic approaches for using substitution in definite integral problems. Both are discussed in this section.

The first approach, which has already been illustrated in an earlier section, is to recognize that once we have an antiderivative, solving the definite integral problem is easy. So we can first solve the corresponding indefinite integral problem, and then use the simplest antiderivative to compute the desired definite integral.

EXAMPLE

use it to solve

Approach #1

an antiderivative;

the definite integral

first find

approach #1

Problem: Find $\int_0^1 x \sqrt{1-x^2} \, dx$.

Solution #1: First solve the corresponding indefinite integral problem:

$$\int x\sqrt{1-x^2} \, dx = \frac{1}{-2} \int -2x\sqrt{1-x^2} \, dx$$
$$= -\frac{1}{2} \int u^{1/2} \, du$$
$$= -\frac{1}{2} (\frac{2}{3}u^{3/2}) + C$$
$$= -\frac{1}{3}(1-x^2)^{3/2} + C$$
$$= -\frac{1}{3}(\sqrt{1-x^2})^3 + C$$

The simplest antiderivative is when C = 0. Then:

$$\int_0^1 x\sqrt{1-x^2} \, dx = -\frac{1}{3}(\sqrt{1-x^2})^3 \Big|_0^1$$
$$= 0 - (-\frac{1}{3} \cdot 1) = \frac{1}{3}$$

http://www.onemathematicalcat.org

EXAMPLE

approach #2; transform the original definite integral into a NEW definite integral;

changing the limits of integration Another approach, that allows the solution to be written down more compactly, is to transform the original definite integral into a NEW definite integral, as illustrated in this alternate solution:

Solution #2:

$$\int_{0}^{1} x\sqrt{1-x^{2}} \, dx = -\frac{1}{2} \int_{0}^{1} -2x\sqrt{1-x^{2}} \, dx$$

$$= -\frac{1}{2} \int_{1}^{0} \underbrace{u^{1/2} \, du}_{0} \quad \text{NEW} \quad \text{limita}_{0}$$

$$= -\frac{1}{2} \int_{1}^{0} \underbrace{u^{1/2} \, du}_{0} \quad \text{of integration}_{0}$$

$$= -\frac{1}{2} \cdot \frac{2}{3} u^{3/2} |_{1}^{0}$$

$$= -\frac{1}{3} (0-1) = \frac{1}{3}$$

KEY OBSERVATIONS for using Approach #2

- Decide upon an appropriate substitution, just as you do with indefinite integral problems.
- Write the substitution directly under the definite integral, as usual.
- Directly under the substitution, calculate the limits of integration for the *new* definite integral (in the variable *u*). Remember: *don't* change the *limits* of integration UNTIL you've rewritten the integral in terms of the new variable!
- With this method, you never need to transform the antiderivative back to a function in the original variable.

Below is a sketch illustrating what is happening, from a graphical point of view, in this process.

copyright Dr. Carol JV Fisher Burns

http://www.onemathematicalcat.org

variation on approach #2; don't actually calculate the new limits, just note that they are different There is a variation on the second approach that is often useful. Instead of *actually calculating* the new limits of integration, just make the reader aware that the limits have changed in the transformed problem. That is, when an 'old' limit of integration is 'a', the 'new' limit of integration is denoted by 'u(a)' (the function u, evaluated at a). The technique is illustrated below: Solution #3:

$$\int_{0}^{1} x\sqrt{1-x^{2}} dx = -\frac{1}{2} \int_{0}^{1} -2x\sqrt{1-x^{2}} dx$$
Note that the null limits are different but don't actually calculate them
$$= -\frac{1}{2} \int_{u(0)}^{u(1)} u^{1/2} du$$
CHANGE back to an antiderwative in χ

$$= -\frac{1}{3} (1-x^{2})^{3/2} |_{0}^{1}$$
CHANGE back to an interval of the transmitter in χ

$$= -\frac{1}{3} (0-1) = \frac{1}{3}$$

This technique is useful if the limits of integration for the transformed problem would be particularly messy, or difficult to compute.

EXERCISE 1	♣ Find $\int_0^1 x(3x^2 - 1)^5 dx$. Write down your solution in three different ways. Be sure to write complete and correct mathematical sentences.
lurking in the background	The theoretical justification for this section lies in the following <i>change of variables formula</i> :
Change of Variables Formula	Let f and g' be continuous. Then: $\int_a^b f(g(x)) g'(x) dx = \int_{g(a)}^{g(b)} f(u) du$

Observe that this formula states exactly what we've been doing in this section: letting u = g(x), one obtains du = g'(x) dx; when x = a, u = g(a) and when x = b, u = g(b).

$$\int_{a}^{b} f(\widehat{g(x)}) \, \widehat{g'(x) \, dx} = \int_{g(a)}^{g(b)} f(u) \, du$$

If a function f is continuous on [a, b], then the function F defined by

$$F(x) = \int_{a}^{x} f(t) \, dt$$

is continuous on [a, b], differentiable on (a, b), and F'(x) = f(x) for all $x \in (a, b)$. Thus, every continuous function has an antiderivative. This fact is needed in (the first line of) the following proof.

**

existence of antiderivatives **PROOF** of the Change of Variables Formula

 $\frac{d}{dx}F(g(x)) = F'(g(x)) \cdot g'(x) = f(g(x)) \cdot g'(x)$

so that F(g(x)) is an antiderivative of $f(g(x)) \cdot g'(x)$. Thus:

$$\int_{a}^{b} f(g(x)) g'(x) dx = F(g(x)) \Big|_{a}^{b}$$
$$= F(g(b)) - F(g(a))$$

Proof. Let F be any antiderivative for f, so F' = f. Then, by the Chain Rule,

Also:

$$\int_{g(a)}^{g(b)} f(u) \, du = F(u) \Big|_{g(a)}^{g(b)}$$

= $F(g(b)) - F(g(a))$

Compare!

When using the integration by parts formula with definite integrals, one again has to be careful how things are written down.

As usual, one option is to first solve the corresponding indefinite integral problem, and use any antiderivative to evaluate the definite integral. However, it is more compact to evaluate the definite integral directly, as illustrated in the next example.

EXAMPLE

with definite

integrals

integration by parts

using

using parts with a definite integral Problem: Find $\int_1^2 \ln x \, dx$. Solution:

 $q\pi = \frac{1}{7}qx$

$$\int_{1}^{2} \ln x \, dx = x \ln x \Big|_{1}^{2} - \int_{1}^{2} x \cdot \frac{1}{x} \, dx$$
$$= (2 \ln 2 - 1 \ln 1) - \left[x \Big|_{1}^{2} \right]$$
$$= 2 \ln 2 - [2 - 1]$$
$$= 2 \ln 2 - 1 \approx 0.386$$

Thus, the area under the graph of $y = \ln x$ on [1, 2] is approximately 0.386. Note that it was necessary to evaluate *each part* of the antiderivative from 1 to 2. In both cases, the symbol $\binom{2}{1}$ is read as '*evaluated from* 1 to 2'.

copyright Dr. Carol JV Fisher Burns

EXAMPLE

Problem: find
$$\int_{-1}^{0} 3\ln(1-x) dx$$
.

Solution: It is usually easiest to use the linearity of the integral to factor the constant out first:

Observe how v was chosen to be x-1, instead of simply x, to simplify the integral $\int v\,du\,.$

EXERCISE 2	#	Find $\int_0^1 x e^x dx$, by using parts. Do not solve the corresponding indefinite integral problem first; work directly with the definite integral.
QUICK QUIZ sample questions	1.	Find $\int_0^{\frac{1}{2}} (2x-1)^3 dx$ by first solving the companion indefinite integral problem.
	2.	Find $\int_0^{\frac{1}{2}} (2x-1)^3 dx$ by transforming it into a definite integral in the variable u , with correct limits of integration.
	3.	Solve $\int_1^e \ln x dx$ directly. That is, do NOT first solve the companion indefinite integral problem.

KEYWORDSVarious approaches to using the substitution technique in the context of definite
integrals, the Change of Variables formula, using parts with definite integrals.

END-OF-SECTIONEvaluate the following definite integrals. Use any correct solution technique.EXERCISESBe sure to write complete mathematical sentences. Approximate answers to
three decimal places.

1.
$$\int_{-1}^{1} x\sqrt{1+x^{2}} dx$$

2.
$$\int_{0}^{3} \frac{2}{3x+4} dx$$

3.
$$\int_{1}^{2} \frac{1}{(5-t)^{3}} dt$$

4.
$$\int_{1}^{3} \ln 3x dx$$

5.
$$\int_{2}^{3} 5 \ln(x-1) dx$$