
7.4 The Substitution Technique applied to Definite Integrals

Introduction Consider the definite integral: ∫ 1

0

x
√

1− x2 dx

To find an antiderivative of x
√

1− x2 requires a substitution; when this substi-
tution is performed in the context of the definite integral, one must be careful
how things are written down.

There are two basic approaches for using substitution in definite integral prob-
lems. Both are discussed in this section.

Approach #1

first find
an antiderivative;

use it to solve
the definite integral

The first approach, which has already been illustrated in an earlier section, is
to recognize that once we have an antiderivative, solving the definite integral
problem is easy. So we can first solve the corresponding indefinite integral prob-
lem, and then use the simplest antiderivative to compute the desired definite
integral.

EXAMPLE

approach #1

Problem: Find
∫ 1

0
x
√

1− x2 dx .

Solution #1: First solve the corresponding indefinite integral problem:∫
x
√

1− x2 dx =
1

−2

∫
−2x

√
1− x2 dx

= −1

2

∫
u1/2 du

= −1

2
(
2

3
u3/2) + C

= −1

3
(1− x2)3/2 + C

= −1

3

(√
1− x2

)3
+ C

The simplest antiderivative is when C = 0 . Then:∫ 1

0

x
√

1− x2 dx = −1

3
(
√

1− x2)3
∣∣1
0

= 0− (−1

3
· 1) =

1

3

423
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EXAMPLE

approach #2;

transform the original
definite integral
into a NEW
definite integral;

changing the
limits of
integration

Another approach, that allows the solution to be written down more compactly,
is to transform the original definite integral into a NEW definite integral, as
illustrated in this alternate solution:

Solution #2: ∫ 1

0

x
√

1− x2 dx = −1

2

∫ 1

0

−2x
√

1− x2 dx

= −1

2

∫ 0

1

u1/2 du

= −1

2
· 2

3
u3/2

∣∣0
1

= −1

3
u3/2

∣∣0
1

= −1

3
(0− 1) =

1

3

KEY
OBSERVATIONS
for using
Approach #2

• Decide upon an appropriate substitution, just as you do with indefinite
integral problems.

• Write the substitution directly under the definite integral, as usual.

• Directly under the substitution, calculate the limits of integration for the
new definite integral (in the variable u). Remember: don’t change the
limits of integration UNTIL you’ve rewritten the integral in terms of the
new variable!

• With this method, you never need to transform the antiderivative back to
a function in the original variable.

Below is a sketch illustrating what is happening, from a graphical point of view,
in this process.
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variation on
approach #2;

don’t actually
calculate the
new limits, just
note that
they are different

There is a variation on the second approach that is often useful. Instead of
actually calculating the new limits of integration, just make the reader aware
that the limits have changed in the transformed problem. That is, when an
‘old’ limit of integration is ‘a’, the ‘new’ limit of integration is denoted by ‘u(a)’
(the function u, evaluated at a). The technique is illustrated below:

Solution #3: ∫ 1

0

x
√

1− x2 dx = −1

2

∫ 1

0

−2x
√

1− x2 dx

= −1

2

∫ u(1)

u(0)

u1/2 du

= −1

2

2

3
u3/2

∣∣u(1)
u(0)

= −1

3
(1− x2)3/2

∣∣1
0

= −1

3
(0− 1) =

1

3

This technique is useful if the limits of integration for the transformed problem
would be particularly messy, or difficult to compute.

EXERCISE 1 ♣ Find
∫ 1

0
x(3x2 − 1)5 dx . Write down your solution in three different ways.

Be sure to write complete and correct mathematical sentences.

lurking in the
background

The theoretical justification for this section lies in the following change of vari-
ables formula:

Change of Variables
Formula

Let f and g′ be continuous. Then:∫ b

a

f(g(x)) g′(x) dx =

∫ g(b)

g(a)

f(u) du

Observe that this formula states exactly what we’ve been doing in this section:
letting u = g(x), one obtains du = g′(x) dx; when x = a, u = g(a) and when
x = b, u = g(b). ∫ b

a

f(

u︷︸︸︷
g(x))

du︷ ︸︸ ︷
g′(x) dx =

∫ g(b)

g(a)

f(u) du

FF

existence of
antiderivatives

If a function f is continuous on [a, b], then the function F defined by

F (x) =

∫ x

a

f(t) dt

is continuous on [a, b], differentiable on (a, b), and F ′(x) = f(x) for all x ∈ (a, b).

Thus, every continuous function has an antiderivative. This fact is needed in
(the first line of) the following proof.
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PROOF
of the
Change of Variables
Formula

Proof. Let F be any antiderivative for f , so F ′ = f . Then, by the Chain Rule,

d

dx
F (g(x)) = F ′(g(x)) · g′(x) = f(g(x)) · g′(x)

so that F (g(x)) is an antiderivative of f(g(x)) · g′(x). Thus:∫ b

a

f(g(x)) g′(x) dx = F (g(x))
∣∣b
a

= F (g(b))− F (g(a))

Also: ∫ g(b)

g(a)

f(u) du = F (u)
∣∣g(b)
g(a)

= F (g(b))− F (g(a))

Compare!

using
integration by parts
with definite
integrals

When using the integration by parts formula with definite integrals, one again
has to be careful how things are written down.

As usual, one option is to first solve the corresponding indefinite integral prob-
lem, and use any antiderivative to evaluate the definite integral. However, it
is more compact to evaluate the definite integral directly, as illustrated in the
next example.

EXAMPLE

using parts
with a
definite integral

Problem: Find
∫ 2

1
lnx dx .

Solution: ∫ 2

1

lnx dx = x lnx
∣∣2
1
−
∫ 2

1

x · 1

x
dx

= (2 ln 2− 1 ln 1)−
[
x
∣∣2
1

]
= 2 ln 2− [2− 1]

= 2 ln 2− 1 ≈ 0.386

Thus, the area under the graph of y = lnx on [1, 2] is approximately 0.386 .

Note that it was necessary to evaluate each part of the antiderivative from 1 to

2 . In both cases, the symbol ‘
∣∣2
1
’ is read as ‘evaluated from 1 to 2’.
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EXAMPLE Problem: find
∫ 0

−1 3 ln(1− x) dx .

Solution: It is usually easiest to use the linearity of the integral to factor the
constant out first:∫ 0

−1
3 ln(1− x) dx = 3

[∫ 0

−1
ln(1− x) dx

]
= 3

[
(x− 1) ln(1− x)

∣∣0
−1 −

∫ 0

−1
(x− 1)

1

x− 1
dx

]
= 3

[
(0 + 2 ln 2)−

∫ 0

−1
(1) dx

]
= 3

[
2 ln 2− x

∣∣0
−1

]
= 3[2 ln 2− (0 + 1)]

= 6 ln 2− 3 ≈ 1.159

Observe how v was chosen to be x − 1, instead of simply x, to simplify the
integral

∫
v du .

EXERCISE 2 ♣ Find
∫ 1

0
xex dx, by using parts. Do not solve the corresponding indefinite

integral problem first; work directly with the definite integral.

QUICK QUIZ

sample questions

1. Find
∫ 1

2

0
(2x−1)3 dx by first solving the companion indefinite integral prob-

lem.

2. Find
∫ 1

2

0
(2x−1)3 dx by transforming it into a definite integral in the variable

u, with correct limits of integration.

3. Solve
∫ e

1
lnx dx directly. That is, do NOT first solve the companion indef-

inite integral problem.

KEYWORDS

for this section

Various approaches to using the substitution technique in the context of definite
integrals, the Change of Variables formula, using parts with definite integrals.

END-OF-SECTION
EXERCISES

Evaluate the following definite integrals. Use any correct solution technique.
Be sure to write complete mathematical sentences. Approximate answers to
three decimal places.

1.

∫ 1

−1
x
√

1 + x2 dx

2.

∫ 3

0

2

3x + 4
dx

3.

∫ 2

1

1

(5− t)3
dt

4.

∫ 3

1

ln 3x dx

5.

∫ 3

2

5 ln(x− 1) dx


