CHAPTER 7

THE DEFINITE INTEGRAL

In the previous chapter, the indefinite integral $\int f(x) d x$ was studied. This integral gives all the antiderivatives of the function f.
In this chapter, another type of integral is studied, called the definite integral of f on $[a, b]$, and denoted by $\int_{a}^{b} f(x) d x$. Under suitable conditions, $\int_{a}^{b} f(x) d x$ gives information about the area trapped between the graph of f and the x-axis over the interval $[a, b]$.
The integrals $\int f(x) d x$ and $\int_{a}^{b} f(x) d x$ are, in one sense, very different: $\int f(x) d x$ is a class of functions, (all the antiderivatives of f), but $\int_{a}^{b} f(x) d x$ is a number. However, in another sense, the integrals are very much related: the Fundamental Theorem of Integral Calculus tells us that if we know just one antiderivative of f, then we can compute the number $\int_{a}^{b} f(x) d x$.

