NAME (1 pt) SAMPLE TEST, worth 100 points, Chapter 4

Show all work that leads to your answers. Good luck!

1. (14 pts)	TRUE or FALSE. (Circle the correct response.)				
	Т	\mathbf{F}	If f is continuous at x , then f is differentiable at x .		
	Т	F	$\mathbb{R}-(1,2]=(-\infty,1]\cup(2,\infty)$		
	Т	\mathbf{F}	The Chain Rule tells us how to differentiate composite functions.		
	Т	\mathbf{F}	Let K and n denote positive integers, and let $P(n)$ denote some statement about n. Suppose that $P(1)$ is true. Also suppose that if $P(K)$ is true, then P(K+1) must be true. Then $P(1007)$ is true.		
	Т	\mathbf{F}	$\sum_{i=1}^{3} i^{2i} = 1 + 2^4 + 3^6$		
	Т	\mathbf{F}	$72 \cdot 71 \cdot \ldots \cdot 49 = \frac{72!}{48!}$		
	Т	F	For all functions f and g , if f and g are differentiable at x , and $g'(x) \neq 0$, then $\frac{d}{dx}(\frac{f(x)}{g(x)}) = \frac{f'(x)}{g'(x)}$.		

2. (8 pts) Use the DEFINITION of derivative to find f'(x) if $f(x) = x^2 - 1$. Be sure to write down complete mathematical sentences. I'll get you started:

$$f'(x) = \lim_{h \to 0}$$

3. (5 pts) Use Pascal's triangle to expand $(a+b)^4$.

4. Differentiate the following functions. Use any appropriate tools. Be sure to write complete and correct mathematical sentences. (7 pts) $f(x) = \frac{\sqrt{2}}{\sqrt{x}}$ (7 pts) $y = xe^{2x-1}$ (7 pts) $g(t) = \frac{\ln t}{\sqrt[3]{t^2-1}}$ (7 pts) $y = (x+1)^{11}(e^x)(x^3)$ (A 'generalized product rule' may be helpful here.)

5. (10 pts) Sketch the graph of a function f satisfying each set of requirements: (5 pts) f is continuous on [0, 2], f(0) = 1, f(2) = -1, f is not differentiable at x = 1

(5 pts) $\mathcal{D}(f) = [1, 2], f(1) = -1$, the average rate of change of f on [1, 2] is 4, f is not linear on [1, 2]

6. (10 pts)	(3 pts)	Find the slope of the tangent line to the graph of $f(x) = x^3$ at $x = 1$.
	(4 pts)	Find the EQUATION of the tangent line to the graph of $f(x) = x^3$ at $x = 1$.
	(3 pts)	Find all points (x, y) on the graph of $f(x) = x^3$ where the tangent line has slope 12.
7	(2 nts)	Give the PRIME notation for each of the following:

7.	(2 pts)	Give the PRIME notation for each of the following:
(4 pts)		• the second derivative of f
		• the second derivative of <i>f</i> , evaluated at 2
	(2 pts)	Give the LEIBNITZ notation for each of the following. Assume that y is a function of r
		 the first derivative of y
		• the second derivative of y, evaluated at 0

8. (5 pts)	Suppose that f, g and h are differentiable everywhere. Then:
(5 pts)	$\frac{d}{dx}f(g(h(x))) = _$

9. (8 pts)

Г

Give a precise statement of the Mean Value Theorem, and make a sketch that illustrates what this theorem is saying.

10. (Optional) Differentiate $f(x) = x^{2x}$. (7 pts)