
NAME (1 pt) SAMPLE TEST, worth 100 points, Chapter 5

Show all work that leads to your answers. Good luck!

15 pts	Using the information that the first and second derivatives give, completely graph the function $P(x) = x^3 - 3x + 2$ in the space provided below. Clearly label any critical points, inflection points, x and y-axis intercept(s).		
			ALSE. Circle the correct response. (3 points each) If $(a, f(x))$ is a printipal point for f , then it is a local map of main
12 pts		\mathbf{F}	If $(c, f(c))$ is a critical point for f , then it is a local max or min.
12 pts	Т т		
12 pts	T T T	F F	If $f'(c) = 0$ and $f''(c) > 0$, then the point $(c, f(c))$ is a local min. The second derivative of a function f tells us about the concavity of f .

18 pts	(4 pts) True or False: If a function f is continuous and nonzero on an interval I , th it must be either positive or negative on this interval.
	(6 pts) Find where the function $f(x) = \frac{x(x-2)}{x+3}$ is positive and negative. (Hint: Draw a number line labeled 'Sign of $f(x)$ '.)
	(8 pts) Find the open intervals on which f increases and decreases.
15 pts	Give a precise definition of $\lim_{x\to\infty} f(x) = L$. Make a sketch that illustrates the definition

20 pts

Completely graph $f(x) = \frac{x+1}{x-1}$ in the space provided below. Clearly label all asymptotes.