NAME (1 pt)
SAMPLE TEST, worth 100 points, Chapter 5
Show all work that leads to your answers. Good luck!
$15 \mathrm{pts} \quad$ Using the information that the first and second derivatives give, completely graph the function $P(x)=x^{3}-3 x+2$ in the space provided below. Clearly label any critical points, inflection points, x and y-axis intercept(s).

12 pts TRUE or FALSE. Circle the correct response. (3 points each)
T F If $(c, f(c))$ is a critical point for f, then it is a local max or min.
$\mathrm{T} \quad \mathrm{F} \quad$ If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)>0$, then the point $(c, f(c))$ is a local min.
T F The second derivative of a function f tells us about the concavity of f.
T F Suppose that $(c, f(c))$ is a critical point for f. If $f^{\prime}(x)>0$ to the left of c, and $f^{\prime}(x)<0$ to the right of c, then $(c, f(c))$ is a local maximum for f.
(4 pts) True or False: If a function f is continuous and nonzero on an interval I, then it must be either positive or negative on this interval.
(6 pts) Find where the function $f(x)=\frac{x(x-2)}{x+3}$ is positive and negative. (Hint: Draw a number line labeled 'Sign of $f(x)$ '.)
(8 pts) Find the open intervals on which f increases and decreases.

15 pts
Give a precise definition of $\lim _{x \rightarrow \infty} f(x)=L$. Make a sketch that illustrates the definition.

The graph of a function f is shown below. Read the following information off the graph. Approximate where necessary. If a particular item does not exist, so state.

(1 ea) $f(-2.5) \quad f^{\prime}(-2.5) \quad f^{\prime}(1) \quad \lim _{x \rightarrow-1} f(x)$
(2 pts) open interval(s) where f increases: \qquad
(2 pts) open interval(s) where f^{\prime} is negative:
(2 pts) open interval(s) where f is concave down:
(2 pts) open interval(s) where $f^{\prime \prime}$ is positive: \qquad
(2 pts) all local maximum point(s) for f : \qquad
(2 pts) all inflection point(s) for f : \qquad
(2 pts) all global maximum point(s) for f : \qquad
(2 pts) List all the critical points for f : \qquad
$20 \mathrm{pts} \quad$ Completely graph $f(x)=\frac{x+1}{x-1}$ in the space provided below. Clearly label all asymptotes.

