NAME SAMPLE TEST, worth 100 points, Chapter 6

8 pts	TRU	E or I	FALSE. Circle the correct response. (2 points each)
	Т	\mathbf{F}	$F(x) = x \ln x - x + 2$ is an antiderivative of $f(x) = \ln x$.
	Т	\mathbf{F}	If $f'(x) = g'(x)$ for all $x \in \mathbb{R}$, then f and g differ by at most a constant.
	Т	\mathbf{F}	$\int t^2 dt = t^3 + C$
	Т	\mathbf{F}	An antiderivative of f is a function with derivative f .

6 pts	The graph of a function f is given below. In satisfying:	the space provided, graph a function F \uparrow \downarrow \in $F(x)$
	• $F'(x) = f(x) \forall \ x \in \mathcal{D}(f) ;$	9
	• F is continuous at 0; and	
	• $F(-1) = 2.$	
	1 y = f(x)	>×
	10	
	¢→⊀	
		·

(6 pts)	These questions have to do with the indefinite integral $\int f(x) dx$.
	Fill in the blanks:
	The symbol \int is called the
	The function f being integrated is called the
	The process of finding $\int f(x) dx$ is called
	(There are two possible correct answers here.)
(2 pts)	Rewrite the integral $\int x^2 dx$ using a different dummy variable.
(5 pts)	What is meant by the phrase 'the linearity of the integral'?
(o pts)	what is meant by the phrase the meanty of the megral :

6 pts	Classify each entry as an EXPRESSION or a SENTENCE.
	If a <i>sentence</i> , state whether it is TRUE, FALSE, or CONDITIONAL.
	(2 pts) a) $\int f(t) dt + \int g(t) dt$
	(2 pts) b) $\int x dx = \frac{1}{2} \int 2x dx$
	(2 pts) c) $f(1) = 2$

32 ptsEvaluate the following indefinite integrals. Be sure to write complete mathematical sentences. Use any appropriate methods. (8 pts) a) $\int (\frac{2}{x} + e^{3x} - 1) dx$ (8 pts) b) $\int \ln(x-1) dx$ (8 pts) c) $\int \frac{t}{\sqrt[3]{t^2 - 1}} dt$ (8 pts) d) $\int \frac{3x}{2x+1} dx$

6 pts

Find a function g satisfying
$$g'(x) = \frac{1}{\sqrt{2x-1}}$$
 and $g(1) = 2$.

4 pts

Give an antidifferentiation 'counterpart' to the differentiation formula:

$$\frac{d}{dx}f(g(x)) = f'(g(x)) \cdot g'(x)$$

(5 pts) Fill in a reason for each step below:

$$\int (2x+1)^3 dx = \int (2x+1)^3 \cdot \frac{2}{2} dx \quad ($$

$$= \frac{1}{2} \int (2x+1)^3 2 \, dx \quad ($$

- $\frac{1}{2} \int u^3 \, du \qquad ($

)

$$= \frac{1}{2} \int \frac{u}{4} \frac{u}{4} + C \qquad ($$

$$=\frac{1}{8}(2x+1)^4 + C \qquad ($$

(4 pts) Now, CHECK this antidifferentiation problem.

×

400