NAME

SAMPLE TEST, worth 100 points, Chapter 6

Show all work that leads to your answers. Good luck!

```
8 pts TRUE or FALSE. Circle the correct response. (2 points each)
    T F F
    T F If f
    T F}\quad\int\mp@subsup{t}{}{2}dt=\mp@subsup{t}{}{3}+
    T F An antiderivative of f}\mathrm{ is a function with derivative f
```


13 pts
(6 pts) These questions have to do with the indefinite integral $\int f(x) d x$.
Fill in the blanks:
The symbol \int is called the \qquad .
The function f being integrated is called the \qquad .

The process of finding $\int f(x) d x$ is called \qquad .
(There are two possible correct answers here.)
(2 pts) Rewrite the integral $\int x^{2} d x$ using a different dummy variable.
(5 pts) What is meant by the phrase 'the linearity of the integral'?

6 pts Classify each entry as an EXPRESSION or a SENTENCE.
If a sentence, state whether it is TRUE, FALSE, or CONDITIONAL.
$(2 \mathrm{pts}) \quad$ a) $\int f(t) d t+\int g(t) d t$
$(2 \mathrm{pts}) \quad$ b) $\int x d x=\frac{1}{2} \int 2 x d x$
$(2 \mathrm{pts}) \quad$ c) $f(1)=2$

32 pts Evaluate the following indefinite integrals. Be sure to write complete mathematical sentences. Use any appropriate methods.
$(8 \mathrm{pts}) \quad$ a) $\int\left(\frac{2}{x}+e^{3 x}-1\right) d x$
$(8 \mathrm{pts}) \quad$ b) $\int \ln (x-1) d x$
$(8 \mathrm{pts}) \quad$ c) $\int \frac{t}{\sqrt[3]{t^{2}-1}} d t$
$(8 \mathrm{pts}) \quad \mathrm{d}) \int \frac{3 x}{2 x+1} d x$

6 pts
Find a function g satisfying $g^{\prime}(x)=\frac{1}{\sqrt{2 x-1}}$ and $g(1)=2$.
$4 \mathrm{pts} \quad$ Give an antidifferentiation 'counterpart' to the differentiation formula:

$$
\frac{d}{d x} f(g(x))=f^{\prime}(g(x)) \cdot g^{\prime}(x)
$$

$9 \mathrm{pts} \quad(5 \mathrm{pts}) \quad$ Fill in a reason for each step below:

$$
\begin{aligned}
\int(2 x+1)^{3} d x & =\int(2 x+1)^{3} \cdot \frac{2}{2} d x \\
& =\frac{1}{2} \int(2 x+1)^{3} 2 d x \\
& =\frac{1}{2} \int u^{3} d u \\
& =\frac{1}{2} \cdot \frac{u^{4}}{4}+C \\
& =\frac{1}{8}(2 x+1)^{4}+C
\end{aligned}
$$

(4 pts) Now, CHECK this antidifferentiation problem.
$8 \mathrm{pts} \quad$ A function f is graphed below. Find all the antiderivatives of f. Graph two of these antiderivatives in the space provided.

$8 \mathrm{pts} \quad$ A function f is graphed below. On the same graph, graph another function that has the same derivative as f, and has a nonremovable discontinuity at $x=1$.

