NAME (1 pt) SAMPLE TEST, worth 100 points, Chapter 7

2.

(8 pts)

Show all work	that leads to your answers. Good luck!
1.	TRUE or FALSE. Circle the correct response. (3 points each)
(15 pts)	T F Suppose f is continuous on \mathbb{R} and $F' = f$ Then \int

(15 pts)	Т	\mathbf{F}	Suppose f is continuous on \mathbb{R} and $F' = f$. Then, $\int_a^b f(x) dx = F(b) - F(a)$.
	Т	\mathbf{F}	If f is continuous on \mathbb{R} , then $\int_a^b f(x) dx = \int_a^b f(t) dt$.
	Т	\mathbf{F}	If $\int_a^b f(x) dx = 0$, then $f(x) = 0$ on $[a, b]$.
	Т	\mathbf{F}	If f is continuous, then $\int_a^b f(x) dx$ is a function of x.
	Т	\mathbf{F}	For all functions f that are defined at a, if $x \to a$, then $f(x) \to f(a)$.

Find the area bounded by the graph of $\ln x$ and the x-axis on the interval $[e, e^2]$. Make a sketch that shows the area you are finding.

4. In a few words, discuss why the notation $\int_a^b f(x) dx$ is used for definite integrals. (5 pts)

5. Evaluate the following integrals. Use any appropriate techniques. Be sure to write (20 pts) complete sentences.

(5 pts)
$$\int_{-1}^{0} e^{3x} dx$$

(5 pts)
$$\int_0^1 (2x-1)^7 dx$$

(5 pts)
$$\int \frac{2t}{t-1} dt$$

(5 pts)
$$\int \frac{1}{t \ln t} dt$$

6. (8 pts) Find the area in the first quadrant, bounded by $y = x^2$ and $y = x^4$. Sketch the area that you are finding. Show all work that leads to your answer.

٦

7. (13 pts)	(5 pts)	Give two different partitions of the interval $[0, 1]$, each with norm $\frac{1}{3}$.
	(8 pts)	Find a Riemann sum for $f(x) = x^2$ corresponding to the partition $\{0, 1, 2\}$ of the interval $[0, 2]$. (There are many correct answers possible.) What is your Riemann sum an approximation to?

8. Revolve the area shaded below around the y axis. (18 pts)(8 pts) Find the volume of the resulting solid of revolution by using SHELLS. (10 pts) Find the volume of the resulting solid of revolution by using horizontal DISKS. $y=x^2+1$ ≻⊀ I