ABBREVIATED SOLUTIONS TO
 QUICK QUIZ QUESTIONS and ODD-NUMBERED END-OF-SECTION EXERCISES

CHAPTER 1. ESSENTIAL PRELIMINARIES

Section 1.1 The Language of Mathematics-Expressions versus Sentences

Quick Quiz:

1. a mathematical expression
2. numbers, functions, sets
3. $x=\frac{x}{2}+\frac{x}{2}$ (many others are possible)
4. $\sqrt{x}>2$ and $4-3=7$ are sentences

End-of-Section Exercises:

1. EXP
2. SEN, T
3. SEN, F
4. SEN, T
5. SEN, ST/SF
6. SEN, T
7. EXP
8. SEN, T
9. SEN, ST/SF
10. SEN, T
11. SEN, F
12. SEN, T
13. SEN, ST/SF
14. EXP
15. SEN, T
16. SEN, T
17. SEN, ST/SF
18. SEN, F
19. Commutative Property of Addition
20. Distributive Property
21. If $x=1$ and $y=3: \quad 1-3=1+(-3)=-2$

If $x=1$ and $y=-3: \quad 1-(-3)=1+(-(-3))=1+3=4$
43. The expression $x y z$ is not ambiguous; if one person computes this as $(x y) z$ and another as $x(y z)$, the same results are obtained.

Section 1.2 The Role of Variables

Quick Quiz:

1. The variables are x and y; the constants are A, B, and C.
2. With universal set $\mathbb{R}, x^{2}=3$ has solution set $\{\sqrt{3},-\sqrt{3}\}$. With universal set \mathbb{Z}, the solution set is empty.
3. To 'solve' an equation means to find all choices (from some universal set) that make the equation true. Three solutions of $x+y=4:(0,4),(4,0)$, and $(2,2)$. There are an infinite number of solution pairs!
4. The equation $x^{2} \geq 0$ is (always) true. The equation $x>0$ is conditional; it is true for $x \in(0, \infty)$, and false otherwise.
5. Choose two from the following list:

- variables are used in mathematical expressions to denote quantities that are allowed to vary (like in the formula $A=\pi r^{2}$);
- variables are used to denote a quantity that is initially unknown, but that one would like to know (for example, 'solve $2 x+3=5$ ');
- \quad variables are used to state a general principle (like the commutative law of addition).

End-of-Section Exercises:

1. EXP
2. SEN, F
3. SEN, T
4. SEN, F
5. SEN, F
6. SEN, T
7. EXP
$15 . \mathbb{R}$: the only solution is 1 ;
the rational numbers: the only solution is 1 ;
the integers: the only solution is 1 .
17 . \mathbb{R} : setting each factor to 0 , the real number solutions are $1,-\pi$, and $\frac{3}{2}$;
the rational numbers: the only rational solutions are 1 and $\frac{3}{2}$;
the integers: the only integer solution is 1.
8. a) The points are plotted at right:

b) Since $\left(-\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}=\frac{1}{4}+\frac{3}{4}=1$, the point $\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ lies on the unit circle. Same for the remaining point.
c) Clearly, the number 1 satisfies the equation. To see that $-\frac{1}{2}+\frac{\sqrt{3}}{2} i$ satisfies $x^{3}=1$, observe that:

$$
\begin{aligned}
\left(-\frac{1}{2}+\frac{\sqrt{3}}{2} i\right)^{3} & =\left(-\frac{1}{2}+\frac{\sqrt{3}}{2} i\right)\left(-\frac{1}{2}+\frac{\sqrt{3}}{2} i\right)\left(-\frac{1}{2}+\frac{\sqrt{3}}{2} i\right) \\
& =\left(\frac{1}{4}-\frac{\sqrt{3}}{2} i-\frac{3}{4}\right)\left(-\frac{1}{2}+\frac{\sqrt{3}}{2} i\right) \\
& =\left(-\frac{1}{2}-\frac{\sqrt{3}}{2} i\right)\left(-\frac{1}{2}+\frac{\sqrt{3}}{2} i\right) \\
& =\frac{1}{4}+\frac{3}{4} \\
& =1
\end{aligned}
$$

Similarly for the remaining number.
d) The equation $x^{3}-1=0$ has the same solutions as the equation $x^{3}=1$, so the problem has already been solved.

Section 1.3 Sets and Set Notation

Quick Quiz:

1. F; the set has only 3 members
2. F
3. T
4. F
5. $105=5 \cdot 3 \cdot 7 ; \mathrm{F}$

End-of-Section Exercises:

1. EXP; this is a set
2. SEN, T
3. SEN, F
4. SEN, C. The truth of this sentence depends upon the set S and the element x.
5. SEN, C. The truth depends on x. If x is 1,2 , or 3 , then the sentence is true. Otherwise, it is false.
6. EXP; this is a set
7. SEN, T
8. SEN, C. The only number that makes this true is 1 .
9. SEN, T. No matter what real number is chosen for x, both component sentences ' $|x| \geq 0$ ' and ' $x^{2} \geq 0$ ' are true.
10. SEN, T. The two elements are both sets: $\{1\}$ and $\{1,\{2\}\}$
11. SEN, F. The number $\frac{3}{7}$ is in reduced form; the denominator has factors other than 2's and 5's.

Section 1.4 Mathematical Equivalence

Quick Quiz:

1. F ; when x is -2 , the first sentence is false, but the second is true.
2. THEOREM: For all real numbers a, b and c :

$$
a=b \quad \Longleftrightarrow \quad a+c=b+c
$$

3. THEOREM: For all real numbers a, b and c :

$$
a>b \quad \Longleftrightarrow \quad a+c>b+c
$$

4. $\quad\{(x, y) \mid x \neq 3$ and $y \neq 0\}$
5. equivalent
6. expressions; sentences

End-of-Section Exercises:
3. SEN, T. Both sentences have the same implied domain, and the same solution set, $\{4\}$.
5. SEN, T. Both sentences have the same implied domain, and the same solution set, $\{0\}$.
7. EXP
9. SEN, T. Both sentences have the same implied domain, and the same solution set, $\{-2\}$.
11.

$$
\begin{array}{rll}
5 x-7=3 & \Longleftrightarrow 5 x=10 \quad & (\text { add } 7) \\
& \Longleftrightarrow \quad x=2 \quad & (\text { divide by } 5)
\end{array}
$$

13.

$$
\begin{aligned}
3 x<x-11 & \Longleftrightarrow 2 x<-11 \quad(\text { subtract } x) \\
& \left.\Longleftrightarrow x<-\frac{11}{2} \quad \text { (divide by the positive number } 2\right)
\end{aligned}
$$

Section 1.5 Graphs

Quick Quiz:
1.

3. $y-x^{2}+1=0 \Longleftrightarrow y=x^{2}-1$;

4. First graph the boundary, $y=2 x$. We want all points on or below this line.

5. TRUE
6.

End-of-Section Exercises:

1. $x=\pi$

2. $|x|=2 \Longleftrightarrow x=2$ or $x=-2$

3. $\quad 3 x<-2 \Longleftrightarrow x<-\frac{2}{3}$

4. $x=0$ or $|x|=1$

5. $x=1$ or $|x|=1$

6. The critical observation here is that there are TWO numbers whose absolute value is 7 : 7, and -7 . Thus:

$$
\begin{aligned}
|3 x+1|=7 & \Longleftrightarrow 3 x+1=7 \text { or } 3 x+1=-7 \\
& \Longleftrightarrow 3 x=6 \text { or } 3 x=-8 \\
& \Longleftrightarrow x=2 \text { or } x=-\frac{8}{3}
\end{aligned}
$$

The solution set is $\left\{2,-\frac{8}{3}\right\}$.

13. $x+y=2 \Longleftrightarrow y=-x+2$. The graph is the line that crosses the y-axis at 2 , and has slope -1 .

15. The graph of ' $x=1$ or $y=-2$ ' is the set of all points with x-coordinate 1 , together with all points with y-coordinate -2 . The graph is shown below.

17. The solution set of $|y|=1$, viewed as an equation in two variables, is $\{(x, y)|x \in \mathbb{R},|y|=1\}$. Thus, we seek all points with y-coordinates 1 or -1 . See the graph below.

19.

$$
\begin{aligned}
|x+y|=1 & \Longleftrightarrow x+y=1 \text { or } x+y=-1 \\
& \Longleftrightarrow y=-x+1 \text { or } y=-x-1
\end{aligned}
$$

The graph is the two lines shown below.

