CHAPTER 2. FUNCTIONS

Section 2.1 Functions and Function Notation

Quick Quiz:

1. In the graph shown, y is a function of x, because for every x, there is a unique y. That is, the graph passes a vertical line test.
However, x is not a function of y. It is NOT true that for every y, there is a unique x. That is, the graph does NOT pass a horizontal line test.
2.

$$
x^{2}-y+1=0 \quad \Longleftrightarrow \quad y=x^{2}+1
$$

For every value of x, there is a unique value of y. Thus, y is a function of x.
3.

$$
\begin{aligned}
x^{2}-y+1=0 & \Longleftrightarrow x^{2}=y-1 \\
& \Longleftrightarrow x= \pm \sqrt{y-1}
\end{aligned}
$$

For each allowable y-value, there are two x-values. Therefore, x is NOT a function of y.
4. Calling the function $f: f(x)=\left(\frac{x}{2}-3\right)^{2}$
5. $g(-1)=2(-1)^{2}-1=2-1=1$
$g\left(x^{2}\right)=2\left(x^{2}\right)^{2}-1=2 x^{4}-1$
End-of-Section Exercises:

1. $f(0)=0^{3}-1=-1$
$f(1)=1^{3}-1=0$
$f(-1)=(-1)^{3}-1=-1-1=-2$
$f(t)=t^{3}-1$
$f(f(2))$; first find $f(2): f(2)=2^{3}-1=7$; then, $f(f(2))=f(7)=7^{3}-1=342$
2. $f(-2)=|-2|=2$
$f(t)=|t|= \begin{cases}t & \text { if } t \geq 0 \\ -t & \text { if } t<0\end{cases}$
$f(-t)=|-t|=|t|$
$f\left(x^{2}\right)=\left|x^{2}\right|=|x|^{2}$
3. $h(-x)=\frac{1}{-x}=-\frac{1}{x}$
$h(h(x))=h\left(\frac{1}{x}\right)=\frac{1}{1 / x}=x$
$h\left(\frac{1}{x}\right)=\frac{1}{1 / x}=x$
$h(x+\Delta x)=\frac{1}{x+\Delta x}$
$h(|x|)=\frac{1}{|x|}=\left|\frac{1}{x}\right|$
4. $h(1,1)=1^{2}+1^{2}-1=1$
$h(x, x)=x^{2}+x^{2}-1=2 x^{2}-1$
$h(y, x)=y^{2}+x^{2}-1=h(x, y)$
$h(x+\Delta x, y+\Delta y)=(x+\Delta x)^{2}+(y+\Delta y)^{2}-1$

Section 2.2 Graphs of Functions

Quick Quiz:
1.

$$
\begin{aligned}
\mathcal{D}(f) & =\left\{x \mid 2 x-1 \geq 0 \text { and } x^{2}-9 \neq 0\right\} \\
& =\left\{x \mid 2 x \geq 1 \text { and } x^{2} \neq 9\right\} \\
& =\left\{x \left\lvert\, x \geq \frac{1}{2}\right. \text { and }|x| \neq 3\right\} \\
& =\left\{x \left\lvert\, x \geq \frac{1}{2}\right. \text { and } x \neq 3 \text { and } x \neq-3\right\} \\
& =\left\{x \left\lvert\, x \geq \frac{1}{2}\right. \text { and } x \neq 3\right\}
\end{aligned}
$$

Note that if $x \geq \frac{1}{2}$, then automatically, x is not equal to -3 .
2. TRUE. The order that elements are listed in a set is unimportant. In this sentence, the ' $=$ ' sign is being used for equality of SETS.
3. By definition, the graph of f is the set of points $\{(x, f(x)) \mid x \in \mathcal{D}(f)\}$. More precisely, the graph usually refers to a (partial) picture of this set of points, in the $x y$-plane.
4. $\mathcal{D}(f)=[3, \infty)$; the graph is 'built up' below:

5. $\quad P(-1)=(-1)^{4}-2(-1)^{2}+1=1-2+1=0$; therefore -1 is a root of P. Long division by $x-(-1)=x+1$ yields:

Therefore: $P(x)=(x+1)\left(x^{3}-x^{2}-x+1\right)$
End-Of-Section Exercises:

1. EXP; this is a set.
2. SEN; TRUE. The component sentences ' $x \geq 2$ and $x \neq 1$ ' and ' $x \geq 2$ ' always have the same truth values. Both are true on $[2, \infty)$ and false elsewhere.
3. SEN; TRUE
4. SEN; TRUE. Both sets are equal to $\{3\}$.
5. SEN; this is TRUE (by definition), providing g is a function of one variable.

The graphs requested in problems 11 and 13 are given below:

13

Section 2.3 Composite Functions

Quick Quiz:

1. $A \cap B:=\{x \mid x \in A$ and $x \in B\}$. If $A=[1,3)$ and $B=\{1,2,3\}$, then $A \cap B=\{1,2\}$ since the only elements that are in both A and B are 1 and 2 .
2. The sentence ' $[1,3] \subset\{1,3\}$ ' is FALSE. For example, $2 \in[1,3]$, but $2 \notin\{1,3\}$.

The sentence ' $\{1,3\} \subset[1,3]$ ' is TRUE.
The sentence 'For all sets A and $B, A \cap B \subset A$ ' is TRUE. Everything that is in BOTH A and B, is also in A.
3. $(f+g)(x):=f(x)+g(x)$
$\mathcal{D}(f+g)=\{x \mid x \in \mathcal{D}(f)$ and $x \in \mathcal{D}(g)\}=\mathcal{D}(f) \cap \mathcal{D}(g)$
4. The function f takes an input x, multiplies by 2 , then subtracts 1 . Define $b(x)=2 x$ and $a(x)=x-1$; then:

5. $\mathcal{R}(f)=\{1,-1\}$. The only two output values taken on by f are 1 and -1 .

End-Of-Section Exercises:

1. EXP; $A \cup B$ is a set.
2. SEN; CONDITIONAL. The truth of the sentence ' $A \subset B$ ' depends upon the sets A and B.
3. SEN; CONDITIONAL. The sentence ' $\mathcal{R}(f)=\mathbb{R}^{\prime}$ ' states that the range of a function is the set of real numbers; the truth of this sentence depends upon the function f being referred to.
4. SEN; CONDITIONAL. The truth of this sentence depends upon the choice of functions f and g, and the choice of x.
5. SEN; FALSE. The set $\{a\}$ is NOT an element of the set $\{a, b\}$.
6. $\mathcal{R}(f)=[0,8]$
7. $\mathcal{R}(h)=\{1,2,3,4,5\}$

Section 2.4 One-to-One Functions and Inverse Functions

Quick Quiz:

1. The function $f(x)=x^{2}$ is NOT a one-to-one function. It does NOT have the property for every y, there is a unique x. That is, it does NOT pass the horizontal line test.
2. Translation: 'For every y in the range of f, there exists a unique x in the domain of f.' This is the 'one-to-one' condition for a function f.
3. One correct graph is shown below:

4. $\quad f\left(f^{-1}(x)\right)=x \quad \forall x \in \mathcal{R}(f)$
$f^{-1}(f(x))=x \quad \forall x \in \mathcal{D}(f)$
5. The graph of f is the line shown below; it is clearly $1-1$. The function f takes an input x, multiplies by $\frac{1}{3}$, then subtracts 1 ; to 'undo' this, f^{-1} must take an input x, add 1 , then divide by $\frac{1}{3}$ (that is, multiply by 3). Thus: $f^{-1}(x)=3(x+1)$

End-Of-Section Exercises:

1. EXP; this is a function f^{-1}, evaluated at x
2. SEN; T
3. EXP
4. SEN; T
5. EXP
6. $\mathcal{D}(f)=\mathbb{R}, \quad \mathcal{R}(f)=(-2, \infty)$

7. $\mathcal{D}(h)=\mathbb{R}, \mathcal{R}(h)=(5, \infty)$

