CHAPTER 3. LIMITS AND CONTINUITY

Section 3.1 Limits-The Idea

Quick Quiz:

1. $\lim _{x \rightarrow-2} x^{3}=(-2)^{3}=-8$
2. $\lim _{x \rightarrow-1} f(x)=(-1)^{2}=1$

3. $\lim _{x \rightarrow 1} f(x)=3(1)=3$

4. There are many correct graphs. The graph must contain the point $(2,1)$; and when the inputs are close to 2 (but not equal to 2), the outputs must be close to 5 .

5. $|t-(-1)| \leq 4$

End-of-Section Exercises:

1. EXP
2. SEN; T
3. SEN; C
4. SEN; T
5. SEN; C
6. EXP
7. SEN; (always) T
8. SEN; (always) T
9. SEN; C
10. SEN; T

Section 3.2 Limits-Making It Precise

Quick Quiz:
1.
$\lim _{x \rightarrow c} f(x)=l \Longleftrightarrow \forall \epsilon>0, \exists \delta>0$, such that if $0<|x-c|<\delta$ and $x \in \mathcal{D}(f)$, then $|f(x)-l|<\epsilon$
2. The 'four step process' is summarized using the mapping diagram and and sketch given below. Given $\epsilon>0$, take $\delta=\frac{\epsilon}{3}$.

3. $\lim _{x \rightarrow 2} f(x)$ does not exist
$\lim _{x \rightarrow 2^{+}} f(x)=4$
$\lim _{x \rightarrow 2^{-}} f(x)=2$

End-of-Section Exercises:

1. When 'undoing' the output $-4-\epsilon$, it is important to take the input that lies near -2 ! Take: $\delta:=$ $-2+\sqrt{4+\epsilon}$

2. Take $\delta:=16-(2-\epsilon)^{4}$, since this is the shorter distance.

3. $\lim _{x \rightarrow 1} f(x)=3$
$\lim _{x \rightarrow 1^{+}} f(x)=3$
$\lim _{x \rightarrow 1^{-}} f(x)$ is not defined, since f is not defined to the left of 1
4. $\lim _{x \rightarrow-1} g(x)=-1$
$\lim _{x \rightarrow-1^{+}} g(x)=-1$
$\lim _{x \rightarrow-1^{-}} g(x)=-1$

5. TRUE! Indeed, if $\lim _{x \rightarrow c} f(x)=l$ and f is defined on both sides of c, then both one-sided limits must also exist and equal l.

Section 3.3 Properties of Limits

Quick Quiz:

1. To show that an object is unique, a mathematician often supposes that there are TWO, and then shows that they must be equal.
2. As long as both 'component' limits exist, the limit of a sum is the sum of the limits.
3. For all real numbers a and b :

$$
|a+b| \leq|a|+|b|
$$

4. To evaluate the limit, just evaluate the function f at c; that is, substitute the value c into the formula for f.
5. All the component limits exist, so:

$$
\lim _{z \rightarrow 1} \frac{-2 f(z)+g(z)}{h(z)}=\frac{(-2)(3)+5}{2}=-\frac{1}{2}
$$

End-of-Section Exercises:

1. SEN; TRUE
2. SEN; TRUE
3. SEN; TRUE
4. SEN; TRUE
5. SEN; FALSE
6. SEN; TRUE
7. SEN; CONDITIONAL
8.

$$
\begin{aligned}
\lim _{t \rightarrow c}[f(t)+g(t)] & =\lim _{t \rightarrow c} f(t)+\lim _{t \rightarrow c} g(t) \\
& =(-1)+2 \\
& =1
\end{aligned}
$$

17. There is not enough information to evaluate this limit. We don't know anything about the behavior of f and g, as the inputs approach the number d.

Section 3.4 Continuity

Quick Quiz:

1. A function f is continuous at c if f is defined at c, and $\lim _{x \rightarrow c} f(x)=f(c)$.
2. NO! If f were continuous at c, the value of the limit would have to be 3 . The discontinuity is removable.
3. $\quad f$ has a nonremovable discontinuity at c if $\lim _{x \rightarrow c} f(x)$ does not exist.
4. When f is continuous at c.
5. There are many correct graphs. Here is one:

End-of-Section Exercises:

1. SEN; CONDITIONAL
2. EXP
3. SEN; CONDITIONAL
4. SEN; CONDITIONAL
5. SEN; CONDITIONAL
6. SEN; TRUE
7. SEN; FALSE
8. EXP. Out of context, it is not known if this is a POINT (a, b), or an open interval of real numbers. In either case, however, it is an EXPRESSION.

Section 3.5 Indeterminate Forms

Quick Quiz:

1. An 'indeterminate form' is a limit that, upon direct substitution, results in one of the forms: $\frac{0}{0}, 1^{\infty}$, or $\stackrel{ \pm}{ \pm \infty}$.
2.

$$
\begin{aligned}
\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1} & =\lim _{x \rightarrow 1} \frac{(x-1)(x+1)}{x-1} \\
& =\lim _{x \rightarrow 1}(x+1)=1+1=2
\end{aligned}
$$

3. NO! It is true for all values of x except 1 . When x is 1 , the left-hand side is not defined; the right-hand side equals 2 .
4.

$$
y=\frac{x^{2}-1}{x-1}=\frac{(x-1)(x+1)}{x-1} \stackrel{\text { for }}{=} \underset{=}{=} x+1
$$

The graph is:

5. The graph of f is the same as the graph of $y=\frac{x^{2}-1}{x-1}$. See (4).
6. $\quad f=g$ if and only if $\mathcal{D}(f)=\mathcal{D}(g)$, and $f(x)=g(x)$ for all x in the common domain.

End-of-Section Exercises:

1. SEN; FALSE
2. SEN; FALSE
3. SEN; TRUE
4. SEN; TRUE. (Either both limits do not exist; or they both exist, and are equal.)
5.
6.

$$
\begin{aligned}
\lim _{x \rightarrow-1} \frac{x^{3}+x^{2}-3 x-3}{x+1} & =\lim _{x \rightarrow-1} \frac{(x+1)\left(x^{2}-3\right)}{x+1} \\
& =\lim _{x \rightarrow-1} x^{2}-3 \\
& =(-1)^{2}-3=-2
\end{aligned}
$$

$$
\lim _{x \rightarrow 2} \frac{x+2}{x^{2}+4 x+4}=\frac{2+2}{2^{2}+4(2)+4}=\frac{4}{16}=\frac{1}{4}
$$

13. $\lim _{t \rightarrow 0^{+}}(1+t)^{1 / t}=e$

Section 3.6 The Intermediate Value Theorem

Quick Quiz:

1. If f is continuous on $[a, b]$, and D is any number between $f(a)$ and $f(b)$, then there exists $c \in(a, b)$ with $f(c)=D$.
2. Since f is continuous on $[1,3]$ and 0 is a number between $f(1)$ and $f(3)$, the Intermediate Value Theorem guarantees the existence of a number c with $f(c)=0$.
3. TRUE. When the hypothesis of an implication is false, the implication is (vacuously) true.
4. FALSE. Let $x=-1$. Then the hypothesis $|-1|=1$ is true, but the conclusion $-1=1$ is false.
5.

A	B	$A \Rightarrow B$
T	T	T
T	F	F
F	T	T
F	F	T

END-OF-SECTION EXERCISES:

1. TRUE
2. TRUE
3. TRUE
4. TRUE
5. TRUE

Section 3.7 The Max-Min Theorem

Quick Quiz:

1. The symbol ' \Longleftrightarrow ' can also be read as 'if and only if'.

The number $f(c)$ is a maximum of f on I if and only if $f(x) \leq f(c)$ for all $x \in I$.
2. There are many possible correct graphs.

3. There are many possible correct graphs.

4. If f is continuous on $[a, b]$, then f attains both a maximum and minimum value on $[a, b]$.
5. The contrapositive of the sentence ' $A \Longrightarrow B$ ' is the sentence 'not $B \Longrightarrow \operatorname{not} A$ '.

An implication is equivalent to its contrapositive. That is, the sentences ' $A \Longrightarrow B$ ' and 'not $B \Longrightarrow$ not A^{\prime} always have the same truth values, regardless of the truth values of A and B.

END-OF-SECTION EXERCISES:

1. The minimum value of f on I is 0 ; there is no maximum value. The only minimum point is $(0,0)$.

2. The maximum value of f on I is 4 ; the minimum value of f on I is 4 . The points $(x, 4)$ for $x \in \mathbb{R}$ are all both maximum and minimum points.

3. The minimum value of f on I is 1 ; there is no maximum value. The point $(2,1)$ is the only minimum point.

4. The minimum value of f on I is 0 ; the maximum value is 5 . The only minimum point is $\left(-\frac{1}{2}, 0\right)$; the only maximum point is $(2,5)$.

5. TRUE

Contrapositive: If f does not attain a maximum value on $[a, b]$, then f is not continuous on $[a, b]$.
11. FALSE

Counterexample: Let f be the function graphed below. Then, the hypothesis ' f is continuous on $(a, b]$ ' is TRUE, but the conclusion ' f attains a maximum value on $(a, b]$ ' is FALSE.

Contrapositive: If f does not attain a maximum value on $(a, b]$, then f is not continuous on $(a, b]$.
13. TRUE

Contrapositive: If f does NOT attain both a maximum and minimum value on $[1,2]$, then f is not continuous on $(0,5)$.

15. FALSE.

Counterexample: Let f be the function graphed below. Then the hypothesis ' f is continuous on \mathbb{R} ' is TRUE, but the conclusion ' f attains a maximum value on \mathbb{R} ' is FALSE.

$f(x)=x^{3}$

Contrapositive: If f does not attain a maximum value on \mathbb{R}, then f is not continuous on \mathbb{R}.

