CHAPTER 5. USING THE INFORMATION GIVEN BY THE DERIVATIVE

Section 5.1 Increasing and Decreasing Functions

Quick Quiz:

1. See page 276 .
2. Zeroes of $f: f(x)=0 \Longleftrightarrow(x=0$ or $x=1)$. Choose the test points $-1, \frac{1}{2}$, and 2 . The information is summarized below.

3. TRUE
4. TRUE

END-OF-SECTION EXERCISES:

1. Positive: $(-\infty,-2) \cup(1, \infty)$

Negative: $(-2,1)$
3. Positive: $(-\infty,-1) \cup(3, \infty)$

Negative: $(-1,3)$
5. Positive: $\left(-\infty, \frac{1}{3}\right) \cup\left(\frac{3}{4}, \infty\right)$

Negative: $\left(\frac{1}{3}, \frac{3}{4}\right)$
7. Positive: $(0, \infty)$

Negative: $(-\infty,-1) \cup(-1,0)$
9. Positive: $(-4,-1) \cup(1, \infty)$

Negative: $(-\infty,-4) \cup(-1,1)$
11. Positive: $(0, \infty)$

Negative: $(-\infty, 0)$
13. Positive: $(1, \infty)$

Negative: $\left(\frac{1}{2}, 1\right)$
15. The function f increases on $(-\infty,-2) \cup(1, \infty)$ and decreases on $(-2,1)$.
17. The function f decreases on $(-\infty,-1)$ and increases on $(-1, \infty)$.
19. The function f decreases on $\left(0, \frac{1}{e}\right)$, and increases on $\left(\frac{1}{e}, \infty\right)$.
21. b) 2278
c) 3870
23. c) $1+2+2^{2}+2^{3}+2^{4}=31$
d) $2^{6}+\cdots+2^{10}=1984$

Section 5.2 Local Maxima and Minima-Critical Points

Quick Quiz:

1. The point $(c, f(c))$ must be a critical point. Thus, either it is an endpoint of the domain of f, or $f^{\prime}(c)=0$, or $f^{\prime}(c)$ does not exist.
2. NO! There are critical points that are not local extreme points.
3. The 'critical points' for a function f are the CANDIDATES for the local extreme points of f.
4. NO! When $A \Rightarrow B$ is true, $B \Rightarrow A$ may be either true or false.
5. Since f is differentiable, it is also continuous. By the First Derivative Test, there is a maximum at $x=a ;$ a minimum at $x=c_{1}$; a maximum at $x=c_{2}$; and a minimum at $x=b$.

END-OF-SECTION EXERCISES:

3. TRUE
4. TRUE
5. TRUE
6. FALSE
7. TRUE
8. TRUE
9. FALSE
10. TRUE
11. TRUE

Section 5.3 The Second Derivative-Inflection Points

Quick Quiz:

1. The second derivative of a function tells us the rate of change of the slopes of the tangent lines. This information is referred to as the concavity of the function.
2. $\quad f$ is concave up on I if and only if $f^{\prime \prime}(x)>0$ for every $x \in I$
3. The converse is: If $x^{2}=1$, then $x=1$.

The sentence is false. Choose x to be -1 . Then the hypothesis ' $(-1)^{2}=1$ ' is true, but the conclusion ' $-1=1$ ' is false.
4. By the Second Derivative Test, the point $(c, f(c))$ is a local maximum point for f.
5. $\quad f^{\prime}(x)=3(x-1)^{2}, f^{\prime \prime}(x)=6(x-1)$, so $f^{\prime \prime}(1)=6(1-1)=0$

END-OF-SECTION EXERCISES:

1. local minima at $x=0$ and $x=1$; local maximum at $x=\frac{1}{2}$
2. $f(x)$ is positive on $(-\infty,-2.5) \cup(-2, \infty)$
$f(x)$ is negative on $(-2.5,-2)$
3. $\quad f$ is concave up on $(-2,2)$
f is concave down on $(-3,-2) \cup(2, \infty)$
4. $\mathcal{D}\left(f^{\prime}\right)=\mathbb{R}-\{-4,-3,-2\}$
5. $\quad\{x \mid f(x)>10\}=(-2,-1.5)$
6. $\left\{x \mid f^{\prime \prime}(x)<0\right\}=(-3,-2) \cup(2, \infty)$
7. $\lim _{t \rightarrow-2} f(t)$ does not exist
8. The critical points are: $\{(x, 4) \mid x \in(-\infty,-4)\},(0,2),(-4,4)$ and $(-3,8)$
9. $\{x \in \mathcal{D}(f) \mid f$ is not differentiable at $x\}=\{-4,-3\}$
10. $\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}=f^{\prime}(0)=0$

Section 5.4 Graphing Functions-Some Basic Techniques

Quick Quiz:
1.

2. For $x \gg 0$ and $x \ll 0, P(x) \approx-6 x^{7}$. So as $x \rightarrow \infty, P(x) \rightarrow-\infty$.

As $x \rightarrow-\infty, P(x) \rightarrow \infty$.
3. $\quad f(-x)=(-x)^{5}-(-x)=-x^{5}+x=-\left(x^{5}-x\right)=-f(x)$. Thus, f is ODD, but not EVEN.
4. $f^{\prime}(x)=12 x-7 ; \quad f^{\prime}(x)=0 \Longleftrightarrow x=\frac{7}{12}$

There is a horizontal tangent line at $\left(\frac{7}{12}, f\left(\frac{7}{12}\right)\right) ; f\left(\frac{7}{12}\right)=6\left(\frac{7}{12}\right)^{2}-7\left(\frac{7}{12}\right)-3 \approx-5.04$ $f^{\prime \prime}(x)=12$, so $f^{\prime \prime}(x)>0$ for all x

Section 5.5 More Graphing Techniques

Quick Quiz:

1. Find A and B for which $A B=(3)(-8)=-24$ and $A+B=-2$; take $A=-6$ and $B=4$. Then:

$$
\begin{aligned}
3 x^{2}-2 x-8 & =3 x^{2}-6 x+4 x-8 \\
& =3 x(x-2)+4(x-2) \\
& =(3 x+4)(x-2)
\end{aligned}
$$

2. First, solve $3 x^{2}-2 x-8=0$ using the Quadratic Formula:

$$
x=\frac{2 \pm \sqrt{4-4(3)(-8)}}{6}=\frac{2 \pm 10}{6}=2,-\frac{4}{3}
$$

Then:

$$
\begin{aligned}
3 x^{2}-2 x-8 & =3(x-2)\left(x+\frac{4}{3}\right) \\
& =(x-2)(3 x+4)
\end{aligned}
$$

3. CANDIDATES: $\frac{ \pm 1, \pm 2}{ \pm 1}= \pm 1, \pm 2$
4. $\operatorname{not}(A$ and $B) \Longleftrightarrow(\operatorname{not} A)$ or $(\operatorname{not} B)$
5. $\quad P(1)=-1$; the remainder upon division by $x-1$ equals -1

END-OF-SECTION EXERCISES:

1. $P(x)=2 x^{3}-3 x^{2}-3 x-5=\left(x^{2}+x+1\right)(2 x-5)$
2. $P(x)=x^{4}-5 x^{2}+6=(x-\sqrt{2})(x+\sqrt{2})(x-\sqrt{3})(x+\sqrt{3})$

Section 5.6 Asymptotes-Checking Behavior at Infinity

Quick Quiz:

1. An asymptote is a curve (often a line) that a graph gets close to as x approaches $\pm \infty$, or some finite number.
2. $\lim _{x \rightarrow c^{-}} f(x)=-\infty \Longleftrightarrow \forall M<0 \exists \delta>0$ such that if $x \in(c-\delta, c)$, then $f(x)<M$
3. VERTICAL: $x=-2$

HORIZONTAL: $y=3$
4. Both individual limits (the 'numerator' limit and the 'denominator' limit) must exist. Also, the 'denominator' limit cannot equal zero.

