CHAPTER 6. ANTIDIFFERENTIATION

Section 6.1 Antiderivatives

Quick Quiz:

1. The graph of f is a line with slope 2 . Thus, $f(x)=2 x+C$, for some constant C.
2. Specifying the derivative of a function completely determines its SHAPE.
3. $\int 2 d t=2 t+C$
4. The antiderivatives of a function can be used to find the area trapped between the graph of the function and the x-axis.
5. The phrase refers to the facts that the derivative of a sum is the sum of the derivatives; and constants can be 'slid out' of the differentiation process.

END-OF-SECTION EXERCISES:

1. EXP
2. EXP
3. SEN; CONDITIONAL
4. SEN; TRUE
5. SEN; TRUE

Section 6.2

Quick Quiz:

1. The 'counterpart' is:

$$
\int k e^{k x} d x=e^{k x}+C
$$

A more useful version of this formula is found as follows:

$$
\int k e^{k x} d x=e^{k x}+C \Longleftrightarrow k \int e^{k x} d x=e^{k x}+C \Longleftrightarrow \int e^{k x} d x=\frac{1}{k} e^{k x}+K
$$

2. Rewrite the integrand, and use the Simple Power Rule:
3.

$$
\int \sqrt{x} d x=\int x^{1 / 2} d x=\frac{x^{3 / 2}}{3 / 2}+C=\frac{2}{3} \sqrt{x^{3}}+C
$$

$$
\int \frac{1}{2 t} d t=\frac{1}{2} \int \frac{1}{t} d t=\frac{1}{2} \ln |t|+C
$$

4. If $f^{\prime}(x)=x$, then antidifferentiating yields $f(x)=\frac{x^{2}}{2}+C$. Then:

$$
f(0)=3 \Longleftrightarrow 0+C=3 \Longleftrightarrow C=3
$$

Take: $f(x)=\frac{x^{2}}{2}+3$

Section 6.3

Quick Quiz:

1. 'Speed' has only magnitude (size); 'velocity' has both magnitude and direction.
2. Position at $t=1: d(1)=1^{2}+2(1)=3$ feet
$v(t)=d^{\prime}(t)=2 t+2$; Velocity at $t=1: \quad v(1)=2(1)+2=4$ feet/second
Speed at time $t=1:|v(1)|=|4|=4$ feet/second
$a(t)=v^{\prime}(t)=2$; Acceleration at $t=1: \quad a(1)=2$ feet $/$ second 2
3. A 'vector' is a mathematical object that is completely described by two pieces of information: a magnitude (size), and a direction. Vectors are conveniently represented by arrows.
4. A free-body diagram is a picture that illustrates the forces acting on an object.
5. ' $v(2)$ ' means the velocity function, acting on the input 2 ; this is function notation. However, ' $g(2)$ ' means the constant g, times the number 2. Context is important!

END-OF-SECTION EXERCISES:

1. If 'down' is chosen as the positive direction, and ' 0 ' coincides with the ground, then: $d(t)=g \frac{t^{2}}{2}-20 t-75$
2. approximately 0.63 seconds
3. approximately 1.25 seconds

Section 6.4

Quick Quiz:

1. With appropriate renaming, transform a difficult integration problem into one that is easier to handle. Solve the 'new' integral, then transform the solution back into a solution of the original problem.
2. Substitution:
$\mu=2 x-1$
$d u=2 d x$

$$
\begin{aligned}
\int \frac{1}{2 x-1} d x & =\frac{1}{2} \int \frac{1}{2 x-1} 2 d x \\
& =\frac{1}{2} \int \frac{1}{u} d u=\frac{1}{2} \ln |u|+C \\
& =\frac{1}{2} \ln |2 x-1|+C
\end{aligned}
$$

Without substitution:

$$
\int \frac{1}{2 x-1} d x=\int \frac{1}{2\left(x-\frac{1}{2}\right)} d x=\frac{1}{2} \int \frac{1}{x-\frac{1}{2}} d x=\frac{1}{2} \ln \left|x-\frac{1}{2}\right|+C
$$

To see that the answers differ by only a constant, write:

$$
\frac{1}{2} \ln |2 x-1|=\frac{1}{2} \ln \left|2\left(x-\frac{1}{2}\right)\right|=\frac{1}{2}\left[\ln 2+\ln \left|x-\frac{1}{2}\right|\right]=\frac{1}{2} \ln 2+\frac{1}{2} \ln \left|x-\frac{1}{2}\right|
$$

Thus, the two answers differ only by the constant $\frac{1}{2} \ln 2$.
3. After multiplying by ' 1 ' in an appropriate form, the linearity of the integral is used to 'pull' the unwanted constant part out of the integral.
4.

$$
\int e^{3 x} d x=\frac{1}{3} \int e^{3 x} 3 d x=\frac{1}{3} \int e^{u} d u=\frac{1}{3} e^{u}+C=\frac{1}{3} e^{3 x}+C \quad \begin{aligned}
& u=3 x \\
& d u=3 d x
\end{aligned}
$$

5. We need only check if $\frac{(3 x+\pi)^{6}}{18}$ is an antiderivative of $(3 x+\pi)^{5}$:

$$
\frac{d}{d x}\left(\frac{(3 x+\pi)^{6}}{18}\right)=\frac{1}{18}(6)(3 x+\pi)^{5} \cdot(3)=(3 x+\pi)^{5}
$$

Thus, it IS true that: $\int(3 x+\pi)^{5} d x=\frac{(3 x+\pi)^{6}}{18}+C$

END-OF-SECTION EXERCISES:

1. $\frac{1}{36}(2 x-1)^{18}+C$
2. $\frac{3}{2}(\ln 4 x)^{2}+C$
3. $2 e^{\sqrt{x}}+C$
4. $\frac{-4}{\sqrt{t^{2}+t+1}}+C$
5. $f(x)=\frac{\left(e^{x}+1\right)^{4}}{4}$

Section 6.5

Quick Quiz:

1. In general, integration is harder than differentiation.
2.

$\mu=2+\mathbf{x} ; \mathbf{x}=\mu-2$
$d \mu=\mathrm{d} \mathbf{x}$ $\int \begin{aligned} \frac{x}{2+x} d x & =\int \frac{u-2}{u} d u=\int 1-\frac{2}{u} d u=u-2 \ln |u|+C \\ & =(2+x)-2 \ln |2+x|+C=x-2 \ln |2+x|+K\end{aligned}$
3. There are extensive tables of integrals, and computer programs that can do symbolic integration.

END-OF-SECTION EXERCISES:

1. $\frac{1}{5}\left(\frac{1}{2} e^{2 x}+x\right)+C$
2. $\frac{3}{16} \sqrt[3]{\left(4 t^{2}-1\right)^{2}}+C$
3. $\frac{\left(x^{2}-1\right)^{4}}{8}+C$
4. $\frac{(\ln x)^{4}}{12}+C$

Section 6.6

Quick Quiz:

1. The Integration By Parts formula is:

$$
\int u d v=u v-\int v d u
$$

It is a sort of 'integration counterpart' to the product rule for differentiation.
2.

$$
\begin{aligned}
\int \ln 2 t d t & =(\ln 2 t)(t)-\int t \cdot \frac{1}{t} d t \\
& =t \ln 2 t-\int(1) d t \\
& =t \ln 2 t-t+C
\end{aligned}
$$

3.

$$
\begin{aligned}
\int \ln (x-1) d x & =(x-1) \ln (x-1)-\int \frac{1}{x-1}(x-1) d x \\
& =(x-1) \ln (x-1)-x+C
\end{aligned} \quad \begin{array}{ll}
\mu=\ln (x-1) & d v=d x \\
d \mu=\frac{1}{x-1} d x & N=x-1
\end{array}
$$

4. The choice for ' $d v$ ' must be something that you know how to integrate!

END-OF-SECTION EXERCISES:

1. $\frac{1}{2} e^{2 x}-2 e^{x}+x+C$
2. $\ln \left|1+e^{x}\right|+C$
3. $\sqrt{2 e^{t}}+C$
