CHAPTER 7. THE DEFINITE INTEGRAL

Section 7.1 Using Antiderivatives to find Area

Quick Quiz:

1. The Max-Min Theorem guarantees numbers $m \in[x, x+h]$ and $M \in[x, x+h]$ for which $f(m)$ is the minimum value of f on $[x, x+h]$, and $f(M)$ is the maximum value of f on $[x, x+h]$.
2. If f is continuous at a, then as $x \rightarrow a$, it must be that $f(x) \rightarrow f(a)$.
3. Any sketch where f IS defined at a, but f is NOT continuous at a, will work!

4. $F(x)=x^{3}$ is an antiderivative of $f(x)=3 x^{2}$. Then, the desired area is given by: $F(2)-F(0)=$ $2^{3}-0^{3}=8$
5. The desired area is given by: $F(d)-F(c)$

END-OF-SECTION EXERCISES:
1.

approximation by a triangle: $\frac{1}{2}(1)(e-1) \approx 0.86$
actual area: Using integration by parts, an antiderivative of $f(x)=\ln x$ is $F(x)=x \ln x-x$. Then:

$$
F(e)-F(1)=(e \ln e-e)-(1 \ln 1-1)=(e-e)-(0-1)=1
$$

3.

approximation by a trapezoid: $\frac{1}{2}(4-1)(1+2)=\frac{1}{2}(9)=\frac{9}{2}=4.5$ actual area: An antiderivative of $f(x)=\sqrt{x}=x^{1 / 2}$ is $F(x)=\frac{2}{3} x^{3 / 2}=\frac{2}{3} \sqrt{x^{3}}$. Then:

$$
F(4)-F(1)=\frac{2}{3} \sqrt{4^{3}}-\frac{2}{3} \sqrt{1^{3}}=\frac{2}{3}(8)-\frac{2}{3}(1)=\frac{2}{3}(7)=\frac{14}{3} \approx 4.67
$$

Section 7.2 The Definite Integral

Quick Quiz:

1. The indefinite integral $\int f(x) d x$ gives all the antiderivatives of the function f; by the Fundamental Theorem of Integral Calculus, if just one of these antiderivatives is known, then the definite integral $\int_{a}^{b} f(x) d x$ can be computed!
2. See page 409 .
3. The notation $\left.F(x)\right|_{a} ^{b}$ means $F(b)-F(a)$.
4. $\quad \int_{-1}^{2} x^{2} d x=\left.\frac{x^{3}}{3}\right|_{-1} ^{2}=\frac{1}{3}\left(2^{3}-(-1)^{3}\right)=\frac{1}{3}(8-(-1))=\frac{1}{3}(9)=3$
5. $\quad \int_{-1}^{1} x^{3} d x=\left.\frac{x^{4}}{4}\right|_{-1} ^{1}=\frac{1}{4}\left(1^{4}-(-1)^{4}\right)=0$. On the interval $[-1,1]$, there is the same amount of area above the graph of $y=x^{3}$, as there is below.

END-OF-SECTION EXERCISES:

1. $\frac{48}{5}$
2. -6
3. $\frac{1}{3} \ln 2$
4. $1+e^{2}$
5. The desired area is: $\frac{19}{24}+\frac{81}{8}=\frac{131}{12}$

Section 7.3 The Definite Integral as the Limit of Riemann Sums

Quick Quiz:

1. A partition of an interval $[a, b]$ is a finite set of points from $[a, b]$ that includes both a and b.
2. The length of the longest subinterval must be $\frac{1}{2}$:

$$
\begin{aligned}
& P_{1}=\{1,1.5,2,2.5,3\} \\
& P_{2}=\{1,1.3,1.5,2,2.5,3\}
\end{aligned}
$$

3. There is NOT a unique Riemann sum for f corresponding to this partition; any number x_{1}^{*} may be chosen from the subinterval $[0,1)$; any number x_{2}^{*} may be chosen from the second subinterval $[1,2)$, etc.
4. Think of a rectangle with 'width' $d x$ and 'height' $f(x)$, where x is a number between a and b.

END-OF-SECTION EXERCISES:

1. EXP
2. SENTENCE; TRUE
3. SENTENCE; TRUE
4. SENTENCE; TRUE
5. SENTENCE; TRUE

Section 7.4 The Substitution Technique applied to Definite Integrals

Quick Quiz:

1. $\int(2 x-1)^{3} d x=\frac{1}{2} \int u^{3} d u=\frac{1}{2} \frac{u^{4}}{4}+C=\frac{1}{8}(2 x-1)^{4}+C$;
$\mu=2 x-1$

$$
\int_{0}^{1 / 2}(2 x-1)^{3} d x=\left.\frac{1}{8}(2 x-1)^{4}\right|_{0} ^{1 / 2}=\frac{1}{8}(0-1)=-\frac{1}{8} \quad \text { dues }=\mathbf{2 d} \mathbf{x}
$$

2. $\int_{0}^{1 / 2}(2 x-1)^{3} d x=\frac{1}{2} \int_{0}^{1 / 2}(2 x-1)^{3} 2 d x=\frac{1}{2} \int_{-1}^{0} u^{3} d u=\left.\frac{1}{2} \frac{u^{4}}{4}\right|_{-1} ^{0}=\frac{1}{8}(0-1)=-\frac{1}{8}$
3. $\boldsymbol{\mu}=\ln \boldsymbol{x} \quad \mathbf{d} \boldsymbol{\omega}=\mathbf{d x} \quad \int_{1}^{e} \ln x d x=\left.x \ln x\right|_{1} ^{e}-\int_{1}^{e} x \cdot \frac{1}{x} d x$
$d \mu=\frac{1}{x} d x \quad N=x$
END-OF-SECTION EXERCISES:
4. 0
5. ≈ 0.024
6. ≈ 1.931

Section 7.5 The Area Between Two Curves

Quick Quiz:

1. $\int_{c}^{d}(g(x)-f(x)) d x$
2. The x-axis is described by $y=0$. The intersection points are found by:

$$
-x^{2}+1=0 \quad \Longleftrightarrow \quad x^{2}=1 \quad \Longleftrightarrow \quad x= \pm 1
$$

Using symmetry, the desired area is:

$$
2 \int_{0}^{1}\left(-x^{2}+1\right) d x=\left.\left(x-\frac{x^{3}}{3}\right)\right|_{0} ^{1}=1-\frac{1}{3}=\frac{2}{3}
$$

3. A quick sketch shows that the phrase IS ambiguous; there are two regions with the indicated boundaries. Which is desired? Or, are both desired?

4.

$$
\begin{aligned}
\int_{0}^{1}\left(e^{x}-(-x)\right) d x & =\int_{0}^{1}\left(e^{x}+x\right) d x \\
& =\left.\left(e^{x}+\frac{x^{2}}{2}\right)\right|_{0} ^{1} \\
& =\left(e+\frac{1}{2}\right)-e^{0}=e+\frac{1}{2}-1=e-\frac{1}{2}
\end{aligned}
$$

1. $\frac{2}{15}$
2. $\frac{32}{3}$
3. ≈ 2.438
4. $20 \frac{1}{4}$

Section 7.6 Finding the Volume of a Solid of Revolution-Disks

Quick Quiz:

1. Revolve $x=r$ about the y-axis; or revolve $y=r$ about the x-axis.

2. Revolve $y=-\frac{h}{r} x+h$ about the y-axis; or revolve $y=\frac{h}{r} x$ about the y-axis. (There are other correct answers.)

3. intersection points of $y=x^{2}$ and $y=1: \quad x^{2}=1 \quad \Longleftrightarrow x= \pm 1$

Also: $y=x^{2} \Longleftrightarrow x= \pm \sqrt{y}$
A typical 'slice' at a distance y has volume $\pi(\sqrt{y})^{2} d y$. The desired volume is:

$$
\int_{0}^{1} \pi(\sqrt{y})^{2} d y=\int_{0}^{1} \pi y d y=\left.\pi \frac{y^{2}}{2}\right|_{0} ^{1}=\frac{\pi}{2}(1-0)=\frac{\pi}{2}
$$

END-OF-SECTION EXERCISES:

1. $\frac{4 \pi}{3}$
2. $\frac{\pi}{2}$
3. 8π
4. $\frac{128 \pi}{5}$
5. $\frac{8 \pi}{3}$
6. $\frac{\pi}{4}$

Section 7.7 Finding the Volume of a Solid of Revolution-Shells

Quick Quiz:

1. 'Cut' the shell and unroll it; the volume is:

$$
2 \pi r \cdot h \cdot d x
$$

2.

$$
\int_{0}^{2} 2 \pi x(x) d x=\left.2 \pi \frac{x^{3}}{3}\right|_{0} ^{2}=\frac{2 \pi}{3}(8-0)=\frac{16 \pi}{3}
$$

3. To use horizontal disks would require disks 'with holes'. Thus, in this case, shells are easier to use.

END-OF-SECTION EXERCISES:

1. $\frac{4 \pi}{3}$
2. 2π
