CHAPTER 7. THE DEFINITE INTEGRAL

Section 7.1 Using Antiderivatives to find Area

Quick Quiz:

- 1. The Max-Min Theorem guarantees numbers $m \in [x, x + h]$ and $M \in [x, x + h]$ for which f(m) is the minimum value of f on [x, x + h], and f(M) is the maximum value of f on [x, x + h].
- 2. If f is continuous at a, then as $x \to a$, it must be that $f(x) \to f(a)$.
- 3. Any sketch where f IS defined at a, but f is NOT continuous at a, will work!

- 4. $F(x) = x^3$ is an antiderivative of $f(x) = 3x^2$. Then, the desired area is given by: $F(2) F(0) = 2^3 0^3 = 8$
- 5. The desired area is given by: F(d) F(c)

END-OF-SECTION EXERCISES:

1.

approximation by a triangle: $\frac{1}{2}(1)(e-1) \approx 0.86$

actual area: Using integration by parts, an antiderivative of $f(x) = \ln x$ is $F(x) = x \ln x - x$. Then:

$$F(e) - F(1) = (e \ln e - e) - (1 \ln 1 - 1) = (e - e) - (0 - 1) = 1$$

3.

approximation by a trapezoid: $\frac{1}{2}(4-1)(1+2) = \frac{1}{2}(9) = \frac{9}{2} = 4.5$ actual area: An antiderivative of $f(x) = \sqrt{x} = x^{1/2}$ is $F(x) = \frac{2}{3}x^{3/2} = \frac{2}{3}\sqrt{x^3}$. Then:

$$F(4) - F(1) = \frac{2}{3}\sqrt{4^3} - \frac{2}{3}\sqrt{1^3} = \frac{2}{3}(8) - \frac{2}{3}(1) = \frac{2}{3}(7) = \frac{14}{3} \approx 4.67$$

Section 7.2 The Definite Integral

Quick Quiz:

- 1. The indefinite integral $\int f(x) dx$ gives all the antiderivatives of the function f; by the Fundamental Theorem of Integral Calculus, if just *one* of these antiderivatives is known, then the definite integral $\int_{a}^{b} f(x) dx$ can be computed!
- 2. See page 409.
- 3. The notation $F(x) \Big|_a^b$ means F(b) F(a).
- 4. $\int_{-1}^{2} x^2 dx = \frac{x^3}{3} \Big|_{-1}^{2} = \frac{1}{3} (2^3 (-1)^3) = \frac{1}{3} (8 (-1)) = \frac{1}{3} (9) = 3$
- 5. $\int_{-1}^{1} x^3 dx = \frac{x^4}{4} \Big|_{-1}^{1} = \frac{1}{4} (1^4 (-1)^4) = 0$. On the interval [-1, 1], there is the same amount of area *above* the graph of $y = x^3$, as there is *below*.

END-OF-SECTION EXERCISES:

- 1. $\frac{48}{5}$
- 3. -6
- 5. $\frac{1}{3} \ln 2$
- 7. $1 + e^2$
- 9. The desired area is: $\frac{19}{24} + \frac{81}{8} = \frac{131}{12}$

Section 7.3 The Definite Integral as the Limit of Riemann Sums

Quick Quiz:

- 1. A partition of an interval [a, b] is a finite set of points from [a, b] that includes both a and b.
- 2. The length of the *longest* subinterval must be $\frac{1}{2}$:

- 3. There is NOT a unique Riemann sum for f corresponding to this partition; any number x_1^* may be chosen from the subinterval [0, 1); any number x_2^* may be chosen from the second subinterval [1, 2), etc.
- 4. Think of a rectangle with 'width' dx and 'height' f(x), where x is a number between a and b.

END-OF-SECTION EXERCISES:

- 1. EXP
- 3. SENTENCE; TRUE
- 5. SENTENCE; TRUE
- 7. SENTENCE; TRUE
- 9. SENTENCE; TRUE

Section 7.4 The Substitution Technique applied to Definite Integrals

Quick Quiz:

1.
$$\int (2x-1)^3 dx = \frac{1}{2} \int u^3 du = \frac{1}{2} \frac{u^4}{4} + C = \frac{1}{8} (2x-1)^4 + C; \qquad \text{M} = 2x-1$$
$$\int_0^{1/2} (2x-1)^3 dx = \frac{1}{8} (2x-1)^4 \Big|_0^{1/2} = \frac{1}{8} (0-1) = -\frac{1}{8} \qquad \text{dm} = 2dx$$
2.
$$\int_0^{1/2} (2x-1)^3 dx = \frac{1}{2} \int_0^{1/2} (2x-1)^3 2 dx = \frac{1}{2} \int_{-1}^0 u^3 du = \frac{1}{2} \frac{u^4}{4} \Big|_{-1}^0 = \frac{1}{8} (0-1) = -\frac{1}{8} \qquad \text{M} = -1$$
$$x = \frac{1}{2} \Rightarrow \qquad \text{M} = -1$$
3.
$$M = \ln x \quad \text{du} = dx \quad \int_1^e \ln x \, dx = x \ln x \Big|_1^e - \int_1^e x \cdot \frac{1}{x} \, dx = (e \ln e - 1 \ln 1) - x \Big|_1^e$$

= e - (e - 1) = 1

END-OF-SECTION EXERCISES:

- 1. 0
- 3. ≈ 0.024
- 5. ≈ 1.931

Section 7.5 The Area Between Two Curves

Quick Quiz:

- 1. $\int_{c}^{d} \left(g(x) f(x) \right) dx$
- 2. The x-axis is described by y = 0. The intersection points are found by:

$$-x^2 + 1 = 0 \iff x^2 = 1 \iff x = \pm 1$$

Using symmetry, the desired area is:

$$2\int_0^1 (-x^2+1)\,dx = (x-\frac{x^3}{3})\,\Big|_0^1 = 1 - \frac{1}{3} = \frac{2}{3}$$

3. A quick sketch shows that the phrase IS ambiguous; there are two regions with the indicated boundaries. Which is desired? Or, are both desired?

4.

$$\int_{0}^{1} (e^{x} - (-x)) dx = \int_{0}^{1} (e^{x} + x) dx$$

= $(e^{x} + \frac{x^{2}}{2}) \Big|_{0}^{1}$
= $(e + \frac{1}{2}) - e^{0} = e + \frac{1}{2} - 1 = e - \frac{1}{2}$
ISES:

END-OF-SECTION EXERCISES:

- 1. $\frac{2}{15}$
- 3. $\frac{32}{3}$
- 5. ≈ 2.438
- 7. $20\frac{1}{4}$

Section 7.6 Finding the Volume of a Solid of Revolution—Disks

Quick Quiz:

1. Revolve x = r about the y-axis; or revolve y = r about the x-axis.

2. Revolve $y = -\frac{h}{r}x + h$ about the *y*-axis; or revolve $y = \frac{h}{r}x$ about the *y*-axis. (There are other correct answers.)

4. intersection points of $y = x^2$ and y = 1: $x^2 = 1 \iff x = \pm 1$ Also: $y = x^2 \iff x = \pm \sqrt{y}$ A typical 'slice' at a distance y has volume $\pi(\sqrt{y})^2 dy$. The desired volume is:

$$\int_0^1 \pi(\sqrt{y})^2 \, dy = \int_0^1 \pi y \, dy = \pi \frac{y^2}{2} \Big|_0^1 = \frac{\pi}{2}(1-0) = \frac{\pi}{2}$$

I

END-OF-SECTION EXERCISES:

1. $\frac{4\pi}{3}$ 3. $\frac{\pi}{2}$ 5. 8π 7. $\frac{128\pi}{5}$ 9. $\frac{8\pi}{3}$ 11. $\frac{\pi}{4}$

Section 7.7 Finding the Volume of a Solid of Revolution—Shells

Quick Quiz:

1. 'Cut' the shell and unroll it; the volume is:

 $2\pi r \cdot h \cdot dx$

2.

$$\int_0^2 2\pi x(x) \, dx = 2\pi \frac{x^3}{3} \Big|_0^2 = \frac{2\pi}{3} (8-0) = \frac{16\pi}{3}$$

3. To use horizontal disks would require disks 'with holes'. Thus, in this case, shells are easier to use. END-OF-SECTION EXERCISES:

- 1. $\frac{4\pi}{3}$
- ,
- 3. 2π