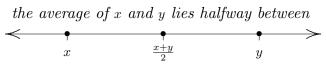
SATstuff#1

MATH CONCEPTS: SAT Math covers concepts in arithmetic, basic algebra, geometry, and basic algebra II. Let's get started!

REAL NUMBERS: All numbers used on the SAT are *real numbers*. The number line below is a perfect picture of the real numbers. Every point on this line is a real number, and every real number lives somewhere on this line.

NUMBERS HAVE LOTS OF DIFFERENT NAMES! There's only one real number at the position halfway between 0 and 1, but it has lots of different names: for example, $\frac{1}{2}$, 0.5, $\frac{7}{14}$, 50%, $\sqrt{1/4}$, and $\frac{2}{3} - \frac{1}{6}$. Different names are better for different purposes.

$$0 \qquad \frac{1}{2} = 0.5 = 50\%$$
 etc. 1


INTEGERS: The INTEGERS are the numbers $\{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$. Thus, 107 is an integer, but $\frac{1}{2}$ isn't. Between any two integers, there are infinitely many real numbers!

	the integers										
<	•;	∮ 3 —2	♀ −1	• 0	• 1	2	2 3	>			

EVEN and ODD integers: EVEN numbers are divisible by 2: $\dots, -4, -2, 0, 2, 4, \dots$ That is, if you divide an even number by 2, the remainder is zero. Even numbers always end in one of these digits: 0, 2, 4, 6, 8. **ODD** numbers leave a remainder of 1 when divided by 2: $\dots, -5, -3, -1, 1, 3, 5, \dots$ Properties of ODD and EVEN numbers: even + even = evenExample: 2 + 4 = 6odd + odd = evenExample: 3 + 5 = 8even + odd = oddExample: 2 + 3 = 5(even)(even) = evenExample: $2 \cdot 4 = 8$ (odd)(odd) = oddExample: $3 \cdot 5 = 15$ (even)(odd) = evenExample: $2 \cdot 3 = 6$

CONSECUTIVE INTEGERS... follow one after the other, without any gaps. For example, -1, 0, 1, and 2 are consecutive integers. The numbers 1, 3, and 4 are *not* consecutive integers. If *n* is an integer, then the next couple integers are n + 1 and n + 2.

AVERAGE: If x and y are any two different real numbers, then the average, $\frac{x+y}{2}$, lies exactly halfway between x and y.

POSITIVE and NEGATIVE: Positive numbers lie to the right of zero (x > 0), and negative numbers lie to the left of zero (x < 0). Zero is the *only* number that isn't either positive or negative; it's neutral.

(positive)(positive) = positive (negative)(negative) = positive (positive)(negative) = negative

OPPOSITE: The opposite of a number x is denoted by -x. Opposites are the same distance from zero, but on opposite sides of zero.

The opposite of a positive number is negative: so if y > 0, then -y < 0.

The opposite of a negative number is positive: so if x < 0, then -x > 0.

BE CAREFUL! If x is negative, then its opposite, -x, is positive!

GREATER THAN, LESS THAN, GREATEST, LEAST: "Greater than" and "less than" have to do with position on the number line.

If x is greater than y (written x > y), then x lies to the right of y.

If x is less than y (written x < y), then x lies to the left of y.

In any collection of numbers, the *greatest* lies farthest to the right; the *least* lies farthest to the left.

EXAMPLE: On the number line below:

- *d* is the greatest; *a* is the least
- -a and -b are positive numbers; -c and -d are negative numbers
- These are all true: a < b, -a > -b, c < d, -d < -c, -d < 0

$$< \begin{array}{cccc} \bullet & \bullet & \bullet & \bullet \\ a & b & 0 & c & d \end{array} >$$

STANDARD SYMBOLS:

- = is equal to
- \neq is not equal to
- > is greater than
- < is less than
- \geq is greater than or equal to
- \leq is less than or equal to

DISTINCT NUMBERS: Math people use the word *distinct* to mean *different*. So, 1, 3, and 4 are distinct numbers. But, 1, 1, and 3 are *not* distinct numbers.

DIGITS and PLACE VALUE: There are ten digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. In our base ten number system, the *position* of a digit determines its contribution to the total value of the number. For example: $732 = 7 \cdot 100 + 3 \cdot 10 + 2 \cdot 1$

FACTORS: (For the discussion of factors, we only consider the numbers 1, 2, 3,) The *factors* of a number are the numbers that go into it evenly. For example, the factors of 10 are 1, 2, 5, and 10. Every number has 1 and itself as factors. A number greater than 1 whose *only* factors are itself and 1 is said to be PRIME.

The first few primes are: 2, 3, 5, 7, 11, 13, 17, 19, 23, and 29.

MULTIPLES: The multiples of 2 are 2, 4, 6, 8, 10, 12, and so on. The multiples of 2 are found by taking the number 2, and multiplying successively by 1, 2, 3,

Notice that 2 goes into each of these numbers evenly.

The multiples of 3 are 3, 6, 9, 12, 15, 18, and so on. The multiples of 3 are found by taking the number 3, and multiplying successively by 1, 2, 3,

Notice that 3 goes into each of these numbers evenly.

In general, the multiples of a number x are x, 2x, 3x, 4x, and so on.

To test if something is a multiple of x, just see if x goes into it evenly.

TIPS & STRATEGIES

EASY TO HARD: All the math questions on the SAT test start off basic and gradually increase in difficulty. If you're doing a problem near the beginning of a section and it seems easy, then it probably is! If you're doing a problem near the end of a section and it seems easy, it's probably really NOT!

A POINT IS A POINT IS A POINT: A point earned on a basic question is the same as a point earned on a difficult question. Answer the easy questions first; save harder questions for last. Unless you're going for a near-perfect score, you shouldn't even bother to answer the questions at the very end. Focus your attention on questions you have a better chance of getting correct. SLOW DOWN, and SCORE MORE.

DON'T PUNCH LOTS OF NUMBERS! A calculator is *allowed* on the SAT, but is not *required*. In other words, you never *need* a calculator to solve any SAT problem. If you find yourself doing lots of computations on your calculator, then STOP: you're not doing the problem the easiest way, you're not likely to get the correct answer with what you're doing, and you're wasting precious time.

SAMPLE GRID-IN PROBLEM: (On a grid-in problem, you write the answer in yourself. More on this type of problem later on.) The sum of all the numbers from 1 to 50 is 1275. What is the sum $2 + 4 + \cdots + 100$?

WRONG APPROACH: Don't pull out your calculator and start adding! Instead, STOP AND THINK. Note that $2(1 + 2 + \dots + 50) = 2 + 4 + \dots + 100$. Thus, the desired sum is (use your calculator here, if you want) $2 \cdot 1275 = 2550$.

KNOW WHAT YOU'RE LOOKING FOR: Read the problem carefully, and CIRCLE what you're being asked to find.

SAMPLE PROBLEM: Four apples plus a pear cost 1.05. The pear costs 25ϕ . What is the cost of two apples?

(A) 30ϕ (B) 20ϕ (C) 15ϕ (D) 40ϕ (E) 25ϕ

WRONG: It's too tempting to go like this: 1.05 - .25 = 0.80 and $\frac{.80}{4} = .20$, so choose (B).

RIGHT: The problem asks for the cost of *two* apples, so the correct answer is (D). If you CIRCLE the words "two apples" as you're reading the problem, then you'll help to avoid this type of mistake.

PICKING NUMBERS: There's more than one way to solve a problem. If a problem seems too abstract because of too many x's and y's, make it more concrete by picking numbers. SAMPLE PROBLEM: If x is positive and y is negative, which of the following must be negative?

(A) x^2 (B) y^2 (C) x - y (D) y - x (E) $(x - y)^2$ ONE CORRECT APPROACH: Any number, squared, is positive. So eliminate (A), (B), and (E). Choose x = 2 and y = -3. Then, x - y = 2 - (-3) = 5 and y - x = -3 - 2 = -5. The correct answer is (D).

PRACTICE PROBLEMS

1.			h of the following is (C) $x^2 - y^2$	s the greatest? (D) $-(x+y)$	(E) $(y-x)^2$
2.	$ \begin{pmatrix} \frac{1}{5} + \frac{1}{3} \end{pmatrix} \div \frac{1}{2} = $ $ (A) \frac{1}{8} $	(B) $\frac{1}{4}$	(C) $\frac{4}{15}$	(D) $\frac{1}{2}$	(E) $\frac{16}{15}$
3.	bananas cost?		s cost 98¢. A plum (C) 45¢	n costs 17¢. How m (D) 51¢	uch would three (E) 15¢
4.			al to an even numbe (C) 3 ²	er? (D) $20 - \frac{6}{2}$	(E) $5+3$
5.	$(3+4)^2 =$ (A) $(2 \times 3) + (2)$	× 4) (B)	$3^2 + 4^2$ (C) +	5 ² (D) 7 ²	(E) $3^2 \times 4^2$
6.	Which of the f (A) 1		T equal to the squa (C) 9	re of an integer? (D) 16	(E) 20
7.		ven integer, the (B) -1	n x could be which (C) 0	of the following? (D) 2	(E) 4
8.	per year, resp	ectively. If she	made an initial pay	t \$12.90, \$16.00, \$1 yment of one-half of l monthly payments	the total yearly

ANSWERS: E, E, C, E, D, E, B, A