SATstuff\#4

This week we'll review functions and properties of exponents.

FUNCTIONS

A FUNCTION is a rule that assigns to each input exactly one corresponding output.
You can think of a function as 'acting on' an input and producing an output.
Using normal function notation, if f is the name of the rule, and x is the input, then $f(x)$ (pronounced as " f of x ") is the corresponding output.

So, what is $g(3)$? It is the output from the function g, when the input is 3 .
What is $f(x+h)$? It is the output from the function f, when the input is $x+h$.
The SAT use more creative notation to illustrate the process of taking number(s), doing something to them, and getting a unique output.
For example, they might define x y to mean $x+3 y$.
Then, $\begin{array}{lll}2 & 5 & \text { represents } 2+3 \cdot 5=17 \text {. }\end{array}$
Verbalizing functions (rules) as SEQUENCES OF OPERATIONS
The best way to think of any function rule is as a sequence of operations.
For example, $2 x+3$ represents the rule: take a number, multiply by 2 , then add 3 .
The rule $3 x^{2}$ represents the rule: take a number, square it, then multiply by 3 .
The rule $(3 x)^{2}$ represents the rule: take a number, multiply by 3 , then square the result.
TRY THESE:
(a) In words, what does the function notation $f(3)$ represent?
(b) Put the rule $f(x)=5 x-1$ into words: take a number, \ldots
(c) Suppose that $\mathrm{x} y$ means mean $2 x+y$.

Find $\quad 1 \quad 3$
(d) Use a mathematical expression to represent this rule: take a number, multiply it by 5 , then subtract 3 .

If you're shooting for a 600 on the Math SAT, then you should work at the pace of about one minute, thirty seconds per multiple-choice problem.
Get a feel for this pace by trying the following function problems:

1. For all positive numbers, $\Rightarrow x$ represents the nearest even integer greater than x. If $x=5$, then $\Rightarrow x$ is
(A) 4
(B) 5
(C) 6
(D) 7
(E) 8
2. Let x be any positive integer. The operation $*$ is defined in the following way: x^{*} represents the least prime number greater than x.
If $x=18$, then $x^{*}=$
(A) 15
(B) 17
(C) 19
(D) 20
(E) 23
3. Let a " k-triple" be defined as $\left(\frac{k}{2}, k, \frac{3}{2} k\right)$ for some number k.

Which of the following is a k-triple?
(A) $(0,5,10)$
(B) $\left(4 \frac{1}{2}, 5,6 \frac{1}{2}\right)$
(C) $(25,50,75)$
(D) $(250,500,1000)$
(E) $(450,500,650)$

4. If \begin{tabular}{|ll}
\hlinew \& x

y \& z

 is defined to equal $w y-x z$, and

w \& x

y \& z
\end{tabular}$-K=0$, then $K=$

(A) $w y-w z$
(B) $x z+w y$
(C) $-x z$
(D) $x z-w y$
(E) $w y-x z$

The next two questions refer to the following definition:
$W X$
$\begin{array}{ll}Y & Z\end{array}$ is a number square if $W+Z=X+Y$ and $2 W=3 X$.

5. If | 3 | X |
| ---: | ---: |
| Y | 5 | is a number square, then what is the value of Y ?

(A) 0
(B) 2
(C) 4
(D) 6
(E) 8

6. If | $W X$ |
| :---: |
| $Y W$ | is a number square, then $Y=$

(A) $\frac{3}{4} W$
(B) W
(C) $\frac{4}{3} W$
(D) $3 W$
(E) $4 W$
7. Let \# be defined by $z \# w=z^{w}$. If $x=5 \# a, y=5 \# b$, and $a+b=3$, then what is the value of $x y$?
(A) 15
(B) 30
(C) 75
(D) 125
(E) 243

EXPONENT LAWS:

Exponent notation is a shorthand for repeated multiplication:

$$
\begin{array}{ll}
& x^{3} \quad \text { means } \quad x \cdot x \cdot x \\
(a+b)^{2} & \text { means } \quad(a+b)(a+b)=a^{2}+2 a b+b^{2} \quad \text { (use FOIL) }
\end{array}
$$

Here are the basic laws for working with exponents:
Things multiplied, same base, ADD the exponents:
$x^{n} x^{m}=x^{m+n}$
Example: $\quad\left(2^{3}\right)\left(2^{5}\right)=(2 \cdot 2 \cdot 2)(2 \cdot 2 \cdot 2 \cdot 2 \cdot 2)=2^{3+5}=2^{8}$
Things divided, same base, SUBTRACT the exponents:
$\frac{x^{m}}{x^{n}}=x^{m-n}$
Example: $\frac{x^{5}}{x^{3}}=\frac{x \cdot x \cdot x \cdot x \cdot x}{x \cdot x \cdot x}=x^{5-3}=x^{2}$
Something to a power, to a power, multiply the exponents:
$\left(x^{m}\right)^{n}=x^{m n}$
Example: $\left(x^{2}\right)^{3}=\left(x^{2}\right)\left(x^{2}\right)\left(x^{2}\right)=(x \cdot x)(x \cdot x)(x \cdot x)=x^{2 \cdot 3}=x^{6}$
Trade a negative exponent in for a "flip":
$x^{-n}=\frac{1}{x^{n}} \quad$ OR $\frac{1}{x^{-n}}=x^{n}$
Example: $(a+b)^{-2}=\frac{1}{(a+b)^{2}}$
Fractional exponents - the denominator tells the kind of root;
the numerator is a power, which can go inside or outside:
$x^{a / b}=\left(x^{1 / b}\right)^{a}=(\sqrt[b]{x})^{a}$ (usually, this name is easiest)
$x^{a / b}=\left(x^{a}\right)^{1 / b}=\sqrt[b]{x^{a}}$
Example: $8^{5 / 3}=(\sqrt[3]{8})^{5}=2^{5}=32$
In particular, $x^{1 / 2}=\sqrt{x}$.
Recall: \sqrt{x} is the nonnegative number which, when squared, gives x :
Example: $\sqrt{4}=2$, even though both $2^{2}=4$ and $(-2)^{2}=4$.
You can't take EVEN roots of NEGATIVE numbers: $\sqrt{-4}$ is not defined.
SPECIAL CASES THAT YOU COME UP A LOT:
$\sqrt{x y}=\sqrt{x} \sqrt{y}$ (only when x and y are BOTH positive)
$\sqrt{\frac{x}{y}}=\frac{\sqrt{x}}{\sqrt{y}}$ (only when x and y are BOTH positive)

TRY THESE:
(a) $\sqrt{(-2)(-2)}=$
(b) $\sqrt{\frac{9}{100}}=$
(c) $\sqrt{x^{2}}=($ Be careful! $)$
(d) $(27)^{2 / 3}=($ Do this WITHOUT a calculator.)

Now, you try these:

1. If $2^{y}=8$ and $y=\frac{x}{2}$, then $x=$
(A) 6
(B) 5
(C) 4
(D) 3
(E) 2
2. If $x=5^{y}$ and $y=z+1$, then what is $\frac{x}{5}$ in terms of z ?
(A) z
(B) $z+1$
(C) 5^{z}
(D) 5^{z+1}
(E) 5^{z+1}
3. If $x+1=7$, then $(x+2)^{2}=$
(A) 25
(B) 36
(C) 49
(D) 64
(E) 81
4. If $\left(x+\frac{1}{x}\right)^{2}=25$, then $\frac{1}{x^{2}}+x^{2}=$
(A) 23
(B) 24
(C) 25
(D) 27
(E) 624
5. If $\left(5^{3}\right)\left(2^{5}\right)=4\left(10^{k}\right)$, then $k=$
(A) 2
(B) 3
(C) 4
(D) 6
(E) 8
6. $\left[\left(2 x^{2} y^{3}\right)^{2}\right]^{3}=$
(A) $4 x^{4} y^{6}$
(B) $12 x^{4} y^{6}$
(C) $64 x^{4} y^{6}$
(D) $64 x^{12} y^{18}$
(E) $64 x^{64} y^{216}$
7. $a \cdot 3 \cdot b^{2} \cdot \frac{1}{2}=$
(A) $a^{3} b$
(B) $1.5 a b^{2}$
(C) $1.5 a^{2} b^{2}$
(D) $3 a b$
(E) $6 a b^{2}$

EXTRA PROBLEMS:

1. For any sentence J, the expression $N_{t}(J)$ is defined to mean the number of times the letter " t " appears in J. If J is the sentence "All cats are good luck," then $N_{t}(J)=$
(A) 0
(B) 1
(C) 2
(D) 3
(E) 4

Questions (2) and (3) refer to the following definition:
$<x\rangle$ is defined as 1 less than the number of digits in the integer x.
For example, $\langle 100\rangle=3-1=2$.
2. If x is a positive integer less than $1,000,001$, then $\langle x\rangle$ is at most
(A) 5
(B) 6
(C) 7
(D) 999,999
(E) 1,000,000
3. If x has 1,001 digits, then what is the value of $\langle<\langle x\rangle \gg$?
(A) 997 (B) 1
(C) 0
(D) -1
(E) It cannot be determined from the information given.
4. For all numbers x, y, and z, if the operation ϕ is defined by the equation $x \phi y=x+x y$, then $x \phi(y \phi z)=$
(A) $x+x y+x y z$
(B) $x+x y z$
(C) $x+x y+z+x z$
(D) $x+y+y z$
(E) $x+y+x y z$

Questions (5) and (6) refer to the following definition:

$$
=\frac{a \cdot b}{c}+\frac{b \cdot c}{a}+\frac{c \cdot a}{b} \text { for all nonzero } a, b, \text { and } c .
$$

For example,

$$
=\frac{2 \cdot 4}{6}+\frac{4 \cdot 6}{2}+\frac{6 \cdot 2}{4}=\frac{4}{3}+12+3=16 \frac{1}{3}
$$

5. =
(A) 1
(B) 9
(C) 10
(D) 16
(E) 26
6. If $x \neq 0, \quad=$
(A) $x^{6}+x^{4}+x^{2}$
(B) $x^{5}+x+\frac{1}{x}$
(C) $x^{4}+x^{3}+1$
(D) $x^{4}+x^{2}+1$
(E) $x^{2}+x+1$
